Modifying effect of rotational forces on the mechanism of the processes of SHS in metallothermal systems during the synthesis
- Authors: Ksandopulo G.I.1
-
Affiliations:
- Institute of Problems in Combustion
- Issue: Vol 14, No 1 (2021)
- Pages: 89-95
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/286613
- DOI: https://doi.org/10.30826/CE21140111
- ID: 286613
Cite item
Abstract
The mechanism of the modifying effect of rotational forces on the structure of the SHS-wave (SHS — self-propagating high-temperature synthesis) front in a cylindrical reactor with a compressed aluminothermic mixture rotating around a vertical axis is presented. It is shown that under the action of centrifugal forces, the particles of the reduced metal produced in the reaction zone of the SHS-wave move to the region ahead of the wave front and initiate new ignition sites in the fresh mixture, thus increasing the propagation velocity of the SHS-wave. This process opens up the possibilities for the synthesis of new nonequilibrium inorganic compounds with high temperature stability and a set of useful properties. As an example, the modifying effect of the addition of inorganic radicals (0.036% Al20B4O36) on the crystallization of the silumin melt with a significant decrease in the size of crystals in the cooled melt is demonstrated.
Keywords
About the authors
Georgy I. Ksandopulo
Institute of Problems in Combustion
Author for correspondence.
Email: ksand@inbox.ru
Doctor of Science in Chemistry, Professor, Honorary Director
Kazakhstan, 172, Bogenbay Batyr St., Almaty, 050012References
- Ksandopulo, G. I., and V. V. Dubinin. 1987. Chemiya gazofaznogo goreniya [Chemistry of gas-phase combustion]. Moscow: Khimiya. 240 p.
- Ksandopulo, G. I. 2011. Staging, negative temperature coefficient of the reaction rate and bifurcation in the monofront of hydrocarbon flames. Russ. J. Phys. Chem. B 5(4):701–711. doi: 10.1134/S199079311104018X.
- Ksandopulo, G. I. 2011. SHS in conditions of rotation: Thermal and concentration combustion limits for oxide systems taken as an example. Int. J. Self-Propag. HighTemp. Synth. 20(4):220–223.
- Sanin, V., D. Andreev, D. Ikornikov, and V. Yukhvid. 2011. Cast intermetallic alloys by SHS under high gravity. J. Acta Phys. Pol. A 120(2):331–335. doi: 10.12693/ APhysPolA.120.331.
- Sanin, V., D. Andreev, D. Ikornikov and V. Yukhvid. 2013. Cast intermetallic alloys and composites based on them by combined centrifugal casting —SHS process. Open J. Metal 3(2B):12–24. doi: 10.4236/ojmetal.2013.32A2003.
- Ksandopulo, G. I. 2015. Non-chain autoacceleration of SHS wave in conditions of rotation. Int. J. Self-Propag. High-Temp. Synth. 24:8–13.
- Alymov, M. I., V. I. Yukhvid, D. E. Andreev, and V. N. Sanin. 2015. Chemical transformations of multicomponent thermite type mixtures in combustion waves. Dokl. Phys. Chem. 460(1):6–9. doi: 10.1134/ S0012501615010029.
- Yukhvid, V. I., D. E. Andreev, V. N. Sanin, Zh. A. Sentyurina, Yu. S. Pogozhev, and E. A. Levashov. 2015. Centrifugal SHS of cast Ti–Al–Nb–Cr alloys. Int. J. SelfPropag. High-Temp. Synth. 24(4):177–181. doi: 10.3103/ S1061386215040159.
- Kolobov, Yu. R., S. A. Bozhko, O. A. Golosova, V. N. Sanin, D. M. Ikornikov, and V. I. Yukhvid. 2015. Fine grained Co–Cr–Mo alloy by combined use of SHS and thermomechanical treatment. Int. J. SelfPropag. High-Temp. Synth. 24(4):231–235. doi: 10.3103/ S1061386215040056.
- Yukhvid, V. I., V. A. Gorshkov, and V. N. Sanin. 2018. Poluchenie novykh keramicheskikh i kompozitsionnykh materialov metodami SVS-metallurgii [Production of new ceramic and composite materials by SHS-metallurgy methods]. Tekhnologicheskoe gorenie [Technological combustion]. Eds. S. M. Aldoshin and M. I. Alymov. 350–371. doi: 10.31857/S9785907036383000014.
- Ksandopulo, G. I., and A. N. Baydeldinova. 2011. Macrokinetics of SHS-process under the effect of centrifugal force. Combustion Plasmochemistry 9(4):241–248.
- Ksandopulo, G. I. 2013. The attacking properties of an adiabatic SHS-wave in rotation conditions. 7th Symposium (International) on Combustion and Plasmochemistry Proceedings. Almaty, Kazakhstan. 20–22.
- Baydeldinova, A. N., K. I. Omarova, B. Zh. Nurakhmetov, N. Sabyrov, and G. I. Ksandopulo. 2013. Experimental researches of properties of adiabatic combustion wave. 7th Symposium (International) on Combustion and Plasmochemistry Proceedings. Almaty, Kazakhstan. 164–167.
- Baideldinova, A., G. Ksandopulo, and L. Mukhina. 2016. Initiation of the adiabatic wave of combustion for obtaining the substances with the free valence. IOP Conf. Ser. 123:012032.
- Ksandopulo, G. I., A. N. Baideldinova, L. V. Mukhina, E. A. Ponomareva, and Z. M. Azizov. 2016. Nanocarbon structures and other nontrivial substances in the SHS product under the action of centrifugal acceleration. Symposium (International) “Physics and Chemistry of Carbon Materials / Nanoengineering.” Conference (International) “Nanoenergy Materials and Nanoenergy.” Almaty, Kazakhstan. 3–7.
- Sanin, V. N., V. I. Yukhvid, and A. G. Merzhanov. 2002. The influence of high-temperature melt infiltration under centrifugal forces on SHS processes in gasless systems. Int. J. Self-Propag. High-Temp. Synth. 11(1):31–44.
- Sanin, V. N., and V. I. Yukhvid. 2005. Centrifugationdriven melt infiltration in high-temperature layered systems. Inorg. Mater. 41(3):247–254.
- Aldushin, A. P., and B. S. Seplyarsky. 1978. Rasprostranenie voln ekzotermicheskoy reaktsii v poristoy srede pri produve gaza [Propagation of exothermic reaction in a porous medium during gas blowing]. Dokl. Akad. Nauk SSSR 241(1):72–75.
- Manelis, G. B. 1996. Superadiabatika [Superadiabatics]. Priroda [Nature] 3-4:43.
- Matkowsky, B. J., A. P. Aldushin, and I. E. Rumanov. 1999. Maximal energy accumulation in superadiabatic filtration combustion wave. Combust. Flame 118:76–90.
Supplementary files
