Modifying effect of rotational forces on the mechanism of the processes of SHS in metallothermal systems during the synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanism of the modifying effect of rotational forces on the structure of the SHS-wave (SHS — self-propagating high-temperature synthesis) front in a cylindrical reactor with a compressed aluminothermic mixture rotating around a vertical axis is presented. It is shown that under the action of centrifugal forces, the particles of the reduced metal produced in the reaction zone of the SHS-wave move to the region ahead of the wave front and initiate new ignition sites in the fresh mixture, thus increasing the propagation velocity of the SHS-wave. This process opens up the possibilities for the synthesis of new nonequilibrium inorganic compounds with high temperature stability and a set of useful properties. As an example, the modifying effect of the addition of inorganic radicals (0.036% Al20B4O36) on the crystallization of the silumin melt with a significant decrease in the size of crystals in the cooled melt is demonstrated.

About the authors

Georgy I. Ksandopulo

Institute of Problems in Combustion

Author for correspondence.
Email: ksand@inbox.ru

Doctor of Science in Chemistry, Professor, Honorary Director

Kazakhstan, 172, Bogenbay Batyr St., Almaty, 050012

References

  1. Ksandopulo, G. I., and V. V. Dubinin. 1987. Chemiya gazofaznogo goreniya [Chemistry of gas-phase combustion]. Moscow: Khimiya. 240 p.
  2. Ksandopulo, G. I. 2011. Staging, negative temperature coefficient of the reaction rate and bifurcation in the monofront of hydrocarbon flames. Russ. J. Phys. Chem. B 5(4):701–711. doi: 10.1134/S199079311104018X.
  3. Ksandopulo, G. I. 2011. SHS in conditions of rotation: Thermal and concentration combustion limits for oxide systems taken as an example. Int. J. Self-Propag. HighTemp. Synth. 20(4):220–223.
  4. Sanin, V., D. Andreev, D. Ikornikov, and V. Yukhvid. 2011. Cast intermetallic alloys by SHS under high gravity. J. Acta Phys. Pol. A 120(2):331–335. doi: 10.12693/ APhysPolA.120.331.
  5. Sanin, V., D. Andreev, D. Ikornikov and V. Yukhvid. 2013. Cast intermetallic alloys and composites based on them by combined centrifugal casting —SHS process. Open J. Metal 3(2B):12–24. doi: 10.4236/ojmetal.2013.32A2003.
  6. Ksandopulo, G. I. 2015. Non-chain autoacceleration of SHS wave in conditions of rotation. Int. J. Self-Propag. High-Temp. Synth. 24:8–13.
  7. Alymov, M. I., V. I. Yukhvid, D. E. Andreev, and V. N. Sanin. 2015. Chemical transformations of multicomponent thermite type mixtures in combustion waves. Dokl. Phys. Chem. 460(1):6–9. doi: 10.1134/ S0012501615010029.
  8. Yukhvid, V. I., D. E. Andreev, V. N. Sanin, Zh. A. Sentyurina, Yu. S. Pogozhev, and E. A. Levashov. 2015. Centrifugal SHS of cast Ti–Al–Nb–Cr alloys. Int. J. SelfPropag. High-Temp. Synth. 24(4):177–181. doi: 10.3103/ S1061386215040159.
  9. Kolobov, Yu. R., S. A. Bozhko, O. A. Golosova, V. N. Sanin, D. M. Ikornikov, and V. I. Yukhvid. 2015. Fine grained Co–Cr–Mo alloy by combined use of SHS and thermomechanical treatment. Int. J. SelfPropag. High-Temp. Synth. 24(4):231–235. doi: 10.3103/ S1061386215040056.
  10. Yukhvid, V. I., V. A. Gorshkov, and V. N. Sanin. 2018. Poluchenie novykh keramicheskikh i kompozitsionnykh materialov metodami SVS-metallurgii [Production of new ceramic and composite materials by SHS-metallurgy methods]. Tekhnologicheskoe gorenie [Technological combustion]. Eds. S. M. Aldoshin and M. I. Alymov. 350–371. doi: 10.31857/S9785907036383000014.
  11. Ksandopulo, G. I., and A. N. Baydeldinova. 2011. Macrokinetics of SHS-process under the effect of centrifugal force. Combustion Plasmochemistry 9(4):241–248.
  12. Ksandopulo, G. I. 2013. The attacking properties of an adiabatic SHS-wave in rotation conditions. 7th Symposium (International) on Combustion and Plasmochemistry Proceedings. Almaty, Kazakhstan. 20–22.
  13. Baydeldinova, A. N., K. I. Omarova, B. Zh. Nurakhmetov, N. Sabyrov, and G. I. Ksandopulo. 2013. Experimental researches of properties of adiabatic combustion wave. 7th Symposium (International) on Combustion and Plasmochemistry Proceedings. Almaty, Kazakhstan. 164–167.
  14. Baideldinova, A., G. Ksandopulo, and L. Mukhina. 2016. Initiation of the adiabatic wave of combustion for obtaining the substances with the free valence. IOP Conf. Ser. 123:012032.
  15. Ksandopulo, G. I., A. N. Baideldinova, L. V. Mukhina, E. A. Ponomareva, and Z. M. Azizov. 2016. Nanocarbon structures and other nontrivial substances in the SHS product under the action of centrifugal acceleration. Symposium (International) “Physics and Chemistry of Carbon Materials / Nanoengineering.” Conference (International) “Nanoenergy Materials and Nanoenergy.” Almaty, Kazakhstan. 3–7.
  16. Sanin, V. N., V. I. Yukhvid, and A. G. Merzhanov. 2002. The influence of high-temperature melt infiltration under centrifugal forces on SHS processes in gasless systems. Int. J. Self-Propag. High-Temp. Synth. 11(1):31–44.
  17. Sanin, V. N., and V. I. Yukhvid. 2005. Centrifugationdriven melt infiltration in high-temperature layered systems. Inorg. Mater. 41(3):247–254.
  18. Aldushin, A. P., and B. S. Seplyarsky. 1978. Rasprostranenie voln ekzotermicheskoy reaktsii v poristoy srede pri produve gaza [Propagation of exothermic reaction in a porous medium during gas blowing]. Dokl. Akad. Nauk SSSR 241(1):72–75.
  19. Manelis, G. B. 1996. Superadiabatika [Superadiabatics]. Priroda [Nature] 3-4:43.
  20. Matkowsky, B. J., A. P. Aldushin, and I. E. Rumanov. 1999. Maximal energy accumulation in superadiabatic filtration combustion wave. Combust. Flame 118:76–90.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».