Combined Two-Component Multi-Addressed Fiber Bragg Structures

Cover Page

Cite item

Full Text

Abstract

Introduction. Two-component one-address fiber Bragg structures (AFBS), a type of fiber-optic sensor, offer significant advantages. They enable the multiplexing of sets and microwave photonic interrogation at unique address frequencies. This capability allows for the construction of multi-sensor, multi-parameter networks with high accuracy and low-cost measurements by substituting optoelectronic interrogators with microwave photonic ones. Despite these advantages, AFBS also have notable drawbacks, primarily the occurrence of inter-address collisions, or false addresses, when structures move relative to each other during measurements. This can lead to situations where some address components of the AFBS coincide or are multiples of frequency. To significantly mitigate the impact of inter-address collisions, both software and hardware methods can be employed. The latter includes the formation of AFBS structures with three or more spectral components, known as multi-addressed fiber Bragg structures (MAFBS). However, the manufacturing technologies for three-component MFBS are significantly more complex than for AFBS, further complicated by the need to vary the address frequencies between the three components to ensure uniqueness. The aim of this research is to develop scientifically-based principles for constructing combined two-component multi-addressed fiber Bragg structures (CMAFBS). CMAFBS must combine the simplicity of recording and controlling address frequencies characteristic of two-component AFBS with the advantages of three-component MAFBS, which are resistant to address collisions. Methods and results. Numerical modeling of AFBS employed the gear matrix method, which is well-regarded for constructing mathematical models of fiber Bragg gratings (FBG), including those with phase inhomogeneities and AFBS. Analysis of the obtained spectral characteristics revealed that the range of changes in additional address frequencies could be formed in the range of 1.2 to 7.2 GHz, which is an order of magnitude smaller than for classical two-component AFBS. It was found that the main parameter influencing the operating mode of the structure (reflection or transmission) is the value of the induced refractive index nmod,​ as it affects the narrowband performance requirement of both the λ-FBG component and the λ/π-FBG transparency window, as well as the ability to control additional address frequencies. This influence, along with the impact of the physical length of each FBG on the characteristics of the CMAFBS, is detailed in the paper. The final section of the paper discusses the prospects for CMAFBS use and examples of their application in multi-sensor systems within the framework of the Smart Grid Plus concept for smart energy grids. Modeling has shown that CAFBS can achieve potential temperature measurement accuracy when assessing the recorded signal by wavelength to within ±0.01 °C with a sensitivity of approximately 13 pm/°C, and by amplitude to within ±0.1 °C, depending on the parameters of the ADC used. Conclusion. The paper presents new sensitive elements for constructing addressable multi-sensor networks for monitoring various physical parameters – combined two-component multi-addressed fiber Bragg structures.

Full Text

Restricted Access

About the authors

Rustam S. Misbakhov

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Email: OGMorozov@kai.ru
ORCID iD: 0000-0003-0742-7827
SPIN-code: 7587-8657

Candidate of Engineering Sciences, Associate Professor at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

Vadim I. Artemyev

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Email: OGMorozov@kai.ru
ORCID iD: 0000-0002-9579-9120
SPIN-code: 3471-4445

Candidate of Engineering Sciences, Associate Professor at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

Oleg G. Morozov

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Author for correspondence.
Email: OGMorozov@kai.ru
ORCID iD: 0000-0003-4779-4656
SPIN-code: 4446-4570

Doctor of Engineering Sciences, Professor, Professor at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

Evgeny V. Kulikov

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Email: OGMorozov@kai.ru
ORCID iD: 0000-0002-3825-8862
SPIN-code: 3643-5559

PhD student at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

Vladimir A. Ivanenko

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Email: OGMorozov@kai.ru
ORCID iD: 0000-0002-1731-1273
SPIN-code: 5739-2344

PhD student at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

Serafim N. Nigmatullin

Kazan Instrument-Making Design Office

Email: OGMorozov@kai.ru
ORCID iD: 0009-0007-7531-330X
SPIN-code: 1701-8984

Engineer of the 1st category

Russian Federation, 1, Siberian tract, Kazan, 420061

Lenar D. Ibragimov

Kazan National Research Technical University named after. A.N. Tupolev-KAI

Email: OGMorozov@kai.ru
ORCID iD: 0009-0004-3926-2179

PhD student at the Department of Radio Photonics and Microwave Technologies

Russian Federation, 10, K. Marx st., Kazan, 420111

References

  1. Misbahov Rus. Sh., Misbahov Rin. Sh., Morozov O. G. et al. Fiber Bragg gratings with two phase shifts as a sensing element and a multiplexing tool for sensor networks. Engineering Journal of Don. 2017;(3):1-13. Аvailable from: http://ivdon.ru/ru/magazine/archive/N3y2017/4343 [Accessed 1 May 2024]. (In Russ.).
  2. Morozov O.G., Sakhabutdinov A.J. Addressed fiber Bragg structures in quasi-distributed microwave-photonic sensor systems. Computer Optics. 2019;43(4):535-543. doi: 10.18287/2412-6179-2019-43-4-535-543. (In Russ.).
  3. Morozov O. G., Sakhabutdinov A. Z., Nureev I. I. et al. Modelling and record technologies of address fiber Bragg structures based on gratings with two symmetrical pi-phase shifts. Journal of Physics: Conference Series. 2019;1368:022048. doi: 10.1088/1742-6596/1368/2/022048
  4. Morozov O. G., Sakhabutdinov A. Z., Nureev I. I. et al. Modelling and record technologies of address fiber Bragg structures based on two identical ultra-narrow gratings with different central wavelengths. Journal of Physics: Conference Series. 2019;(1368):022049. doi: 10.1088/1742-6596/1368/2/022049
  5. Agliullin T. A., Gubaidullin R. R., Morozov O. G. et al. Mathematical modeling of the optical response from addressed fiber Bragg structure based on Lorentz function. Proc. SPIE. 2020;11516:1151614. doi: 10.1117/12.2556726
  6. Gubaidullin R. R., Agliullin T. A., Morozov O. G. et al. Mathematical modeling of optical response of ad-dress fiber Bragg structure using Gauss function. Proc. SPIE. 2020;11516:1151615. doi: 10.1117/12.2557598
  7. Morozov O., Sakhabutdinov A., Anfinogentov V.et al. Multi-addressed fiber Bragg structures for microwave photonic sensor systems. Sensors. 2020;20(9):2693. doi: 10.3390/s20092693
  8. Maskevich K. V., Misbakhov Rin. Sh., Moro-zov O. G. Fiber optic technologies for diagnostic monitoring of digital energy grids based on 'Smart Grids Plus' concept. Proc. IEEE. RusAutoCon; 2018:8501617. doi: 10.1109/RUSAUTOCON.2018.8501617
  9. Novikova V. A., Varzhel S. V., Loseva E. A. et al. Experimental investigation and simulation of phase-shifted fiber Bragg gratings. Journal of Optical Technology. 2021;88(6):315-320. doi: 10.1364/JOT.88.000315
  10. Zhao L., Li L., Luo A., et al. Bandwidth controllable transmission filter based on Moiré fiber Bragg grating. Optik. 2002;113(9):464-468. doi: 10.1078/0030-4026-00188
  11. Agliullin T., Il’In G., Kuznetsov A. et al. Overview of addressed fiber Bragg structures’ development. Photonics. 2023;10(2):175. doi: 10.3390/photonics10020175
  12. de Oliveira Silva S. F. Fibre Bragg grating based structures for optical sensing and filtering. Porto: Universidade do Porto; 2007. 162 p.
  13. Misbakhov Rin. Sh., Vasev A. N., Sakhabutdinov A. Zh. et al. Address fiber optical sensor for relative humidity measuring in a switchgear. Radio Engineering. 2020;(01):1-16. doi: 10.36027/rdeng.0120.0000157. (In Russ.).
  14. Misbakhov Rin. Sh., Vasev A. N., Sakhabutdinov A. Zh. et al. Address fiber optical sensor for acoustic detection of a partial discharge in a switchgear. Electrical and data processing facilities and systems. 2019;15(3):101-110. doi: 10.17122/1999-5458-2019-15-3-101-110. (In Russ.).
  15. Bakhteev K., Fedotov A., Chernova N. et al. Methodological approaches to the choice of energy storage and optimization of their parameters to improve the electric power quality in various types of electric power systems. Proc. of ELEKTROENERGETIKA; 2019:488-493.
  16. Misbakhov Rin. Sh. Combined Raman DTS and address FBG sensor system for distributed and point tem-perature and strain compensation measurements. Proc. IEEE of UralCon; 2019:8877691. doi: 10.1109/URALCON.2019.8877691
  17. Misbakhov Rin. Sh. Combined Brillouin OFDA and address FBG sensor system for distributed and point temperature measurements. Proc. IEEE of UralCon; 2019:8877685. doi: 10.1109/URALCON.2019.8877685
  18. Ivanenko V. A., Nureev I. I., Sakhabutdinov A. Zh. et al. Monitoring of the temperature and geometry of the power transformer windings. Formulation of the problem of scientific research. Electronics, Photonics and Cyberphysical Systems. 2022;2(4):79-85. Аvailable from: https://elphoto.kai.ru/article/view/499 [Ac-cessed 01.05.2024]. (In Russ.).
  19. Kulikov E. V. Addressed fiber Bragg gratings for shock wave front velocity control in pipelines. Electronics, Photonics and Cyberphysical Systems. 2023;3(1):42-54. Аvailable from: https://elphoto.kai.ru/article/view/522 [Accessed 01.05.2024]. (In Russ.).
  20. Agliullin T. A., Anfinogentov V. I., Misbahov Rin. Sh. et al. Multicast fiber Bragg structures in microwave photonics sensor systems. Proceedings of Telecommunication Universities. 2020;6(1):6-13. doi: 10.31854/1813-324X-2020-6-1-6-13 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Asymmetrical CMAFBS (+/π)-AFBS: a) sketch of the structure, b) sketch of the spectral reflection characteristic

Download (285KB)
3. Fig. 2. Spectral reflection characteristic (λ+λ/π)-AFBS (model)

Download (256KB)
4. Fig. 3. Spectral reflection characteristic (λ+λ/π)-AFBS (test recording)

Download (466KB)
5. Fig. 4. Symmetrical CMAFBS (2λ/π-AVBS): a) sketch of the structure, b) sketch of the spectral reflection characteristic

Download (313KB)
6. Fig. 5. Spectral reflection characteristic of 2λ/π -AFBS (model)

Download (296KB)
7. Fig. 6. Spectral reflection characteristic of 2λ/π -AFBS (test recording)

Download (531KB)
8. Fig. 7. Spectral reflection characteristic (λ+λ/π)-AFBS: red curve – L = 20 mm; blue curve – L = 30 mm; green curve – L = 40 mm at constant nmod for λ/π-FBG component

Download (345KB)
9. Fig. 8. Spectral reflection characteristic (λ+λ/π)-AFBS at L = 30 mm: red curve – nmod = 1∙10-5; blue curve – nmod = 3∙10-5; green curve – nmod = 5.5∙10-5

Download (327KB)
10. Fig. 9. Spectral reflection characteristic (λ+λ/π)-AFBS: λ-FBG component – nmod = 1∙10-4; λ/π-FBG component –nmod = 1.3∙10-4

Download (270KB)
11. Fig. 10. Spectral reflection characteristic of 2λ/π-AFBS at nmod = 5.5∙10-5: L1 = 30 mm; L2 = 20 mm

Download (293KB)
12. Fig. 11. Spectral reflection characteristic of 2λ/π-AFBS: λ/π-FBG1 – nmod = 1.3∙10-4, L = 30 mm; λ/π-FBG2 – nmod = 1∙10-4, L = 20 mm

Download (252KB)
13. Fig. 12. Extended functional diagram of FOMSN (fiber-optic multi-sensor network) control of axial and radial geometry of power transformer windings

Download (425KB)
14. Fig. 13. Extended functional diagram of VOMSS temperature control: A – control room; B – object of control with implemented FOS (fiber optic sensor based on 2λ/π-AVBS or (λ+λ/π)-AFBS; 1 – optical cross; 2 – ARPI (addressable radio-photonic interrogator); 3 – wall optical cross

Download (219KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».