Quantitative theory of diffraction on polytypic modifications of coaxial nanotubes
- Authors: Valeeva D.N.1
-
Affiliations:
- Kazan National Research Technical University named after A.N.Tupolev-KAI
- Issue: No 3 (2024)
- Pages: 67-81
- Section: Instrument engineering
- URL: https://journal-vniispk.ru/2306-2819/article/view/276340
- DOI: https://doi.org/10.25686/2306-2819.2024.3.67
- EDN: https://elibrary.ru/IBDJDV
- ID: 276340
Cite item
Full Text
Abstract
Introduction. Research into the electronic properties of field-effect transistor prototypes and other nanotube-based elements has highlighted their potential for use in nanoelectronic devices, boosting experimental design and industrial development. However, these studies also reveal a significant sensitivity of electronic parameters to the nanotube structure, compounded by the fact that synthesis methods rarely produce strictly monophase products with the desired structural characteristics, primarily influenced by their polytypic modifications. Consequently, there is an increasing need for technology that can select conditioned nanotubes from synthesis outputs to ensure consistent production.
This study aims at enhancing a quantitative theory of diffraction applicable to the full range of shear, chiral, and radial polytypic modifications of ordered coaxial nanotubes of various chemical compositions. There were addressed several key problems, including analyzing basal, diffuse, and clear nodes of reciprocal lattices, which led to the derivation of X-ray crystallography formulas linking diffraction patterns of polytypes to their structural parameters. The performed mathematical analysis revealed distinct diffraction phenomena for shear, chiral, and radial polytypes in ordered coaxial nanotubes. The following findings were obtained: 1) Shear polytypes cause the rotation of reciprocal lattice rosettes within their planes; clear rosettes rotate uniformly while diffuse rosettes rotate at varying angles, resulting in shifts along layer lines in diffraction patterns. 2) Chiral polytypes influence both the positions of layer planes and lines, as well as angular splittings of diffuse reflections, with shifts and rotations in repeating layers affecting reflection intensities. We shall note that the chiral indices defined in this study characterize chirality even in nanotubes lacking structural hexagons. The radial polytype is indicated by specific high-frequency oscillations in intensity profiles due to intra-tube interference.
Conclusions: The proposed mathematical framework for analyzing diffraction from polytype modifications of coaxial nanotubes facilitates structural analysis and identification within synthesis products. This technology is applicable not only in the experimental design phase of nanoelectronic elements but also in the production of nanoelectronic devices using tailored nanotube materials. Furthermore, our calibration technology for coaxial nanotubes can enhance process control in related industries.
Full Text

About the authors
Diana N. Valeeva
Kazan National Research Technical University named after A.N.Tupolev-KAI
Author for correspondence.
Email: valeeva.diana_kai@mail.ru
ORCID iD: 0000-0002-1527-6355
SPIN-code: 4387-1187
Engineer, Assistant at the Department for Nanotechnologies in Electronics. Research interests – structural analysis of nanotubes, nanoelectronics. The author of 20 scientific publications.
Russian Federation, 10, K. Marx st., Kazan, 420111References
- Whittaker E. J. W. An orthorhombic variety of chrisotile. Acta Crystallographica. 1951;4(2):187–188. doi: 10.1107/S0365110X5100060X
- Whittaker E. J. W. The unit cell of chrysotile. Acta Crystallographica. 1952;5(1):143–144. doi: 10.1107/s0365110x52000307
- Whittaker E. J. W. The structure of chrysotile. Acta Crystallographica. 1953;6(8–9):747–748. doi: 10.1107/S0365110X53002118
- Whittaker E. J. W. The structure of chrysotile. II. Clino-Chrysotile. Acta Crystallographica. 1956;9(11):855–862. doi: 10.1107/S0365110X5600245X
- Whittaker E. J. W. The structure of chrysotile. III. Ortho-Chrysotile. Acta Crystallographica. 1956;9(11):862–864. doi: 10.1107/S0365110X56002461
- Whittaker E. J. W. The structure of chrysotile. IV. Para-Chrysotile. Acta Crystallographica. 1956;9(11):865–867. doi: 10.1107/S0365110X56002473
- Whittaker E. J. W. The structure of chrysotile. V. Diffuse reflections and fibre texture. Acta Crystallographica. 1957;10(3):149–156. doi: 10.1107/S0365110X57000511
- Whittaker E. J. W. The diffraction of X-rays by a cylindrical lattice. I. Acta Crystallographica. 1954;7(12):827–832. doi: 10.1107/S0365110X5400254X
- Whittaker E. J. W. The diffraction of X-rays by a cylindrical lattice. II. Acta Crystallographica. 1955;8(5):261–265. doi: 10.1107/S0365110X55000856
- Whittaker E. J. W. The diffraction of X-rays by a cylindrical lattice. III. Acta Crystallographica. 1955;8(5):265–271. doi: 10.1107/S0365110X55000868
- Whittaker E. J. W. The diffraction of X-rays by a cylindrical lattice. IV. Acta Crystallographica. 1955;8(11):726–729. doi: 10.1107/S0365110X5500220X
- Jagodsinski H., Kunze G. The rollend structure of chrysotile. Neues Jahrbuch für Mineralogie. Monatshefte. 1954;7:95–108, 113–130, 137–150.
- Kunze G. Zur Röntgenstreuung an unvollständigen zylindrischen Gittern. I, II. Acta Crystallographica. 1956;9(11):841–854. doi: 10.1107/S0365110X56002448
- Высоковольтная электронография в исследовании слоистых минералов / Б. Б. Звягин, З. В. Врублёвская, А. П. Жухлистов и др. М.: Наука, 1979. 224 с. Zvyagin B.B., Vrublexkaya Z.V., Zhukhlistov A.P. et al. High voltage electron diffraction in the study of layered minerals. Moscow, Nauka; 1979. 224 p. (In Russ.).
- Lambin Ph., Lucas A. A. Quantitative theory of diffraction by carbon nanotubes. Physical Review B. 1997;56 (7):3571. doi: 10.1103/PhysRevB.56.3571
- Qin L. C. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. Physical Chemistry Chemical Physics. 2007;9(1):31–48. doi: 10.1039/B614121H
- Lucas A. A., Bruyninckx V., Lambin Ph. et al. Electron diffraction by carbon nanotubes. Scanning Microscopy. 1998;12(3):415–436.
- Reznik D., Olk C. H., Neumann D. A., Copley R. D. X-ray powder diffraction from carbon nanotubes and nanoparticles. Physical Review B. 1995;52(2):116–124. doi: 10.1103/PhysRevB.52.116
- Deniz H., Qin L.-C. Determination of the chiral indices of tungsten disulfide (WS2) nanotubes by electron diffraction. Chemical Physics Letters. 2012;552(12):92–96. doi: 10.1016/j.cplett.2012.09.041
- Amelinckx S., Lucas A., Lambin P. Electron diffraction and microscopy of carbon nanotubes. Reports on Progress in Physics. 1999;62(11):1471–1524. doi: 10.1088/0034-4885/62/11/201
- Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0
- Галимов Э. Р., Халитов З. Я. Моделирование дифракции на нанотрубках. Казань: Изд-во Казанского технического университета им. А.Н. Туполева, 2007. 146 с. Galimov E.R., Khalitov Z.Ya. Modeling of diffraction on nanotubes. Kazan, Kazan National Research Technical University named after A. N. Tupolev – KAI; 2007. 146 p. (In Russ.).
- Figovsky O., Pashin D. M., Khalitov Z. Y., Valeeva D. N. The structure and Diffraction by Chiral Nanotubes of Arbitrary Composition. Chemistry & Chemical Technology. 2012;6(2):167–177. doi: 10.23939/chcht06.02.167
- Radovsky G., Popovitz-Biro R., Staiger M. et al. Synthesis of Copious Amounts of SnS2 and SnS2/SnS Nanotubes with Ordered Superstructures. Angewandte Chemie International Edition. 2011;50(51):12316-12320. doi: 10.1002/anie.201104520
- Валеева Д. Н., Халитов З. Я., Файзуллин Р. Р. Политипные модификации упорядоченной коаксиальной нанотрубки // Вестник Поволжского государственного технологического университета. Сер.: Радиотехнические и инфокоммуникационные системы. 2022. № 2 (54). С. 80–90. doi: 10.25686/2306-2819.2022.2.80; EDN: KHEOTA Valeeva D. N., Khalitov Z. Ya., Faizullin R. R. Polytype Modifications of an Ordered Coaxial Nanotube. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2022;(2(54)):80–90. doi: 10.25686/2306-2819.2022.2.80 (In Russ.).
- Khalitov Z., Khadiev A., Valeeva D., Pashin D. Structure of ordered coaxial and scroll nanotubes: general approach. Acta Crystallographica Section A: Foundations and Advances. 2016;72(1):36–49. doi: 10.1107/S2053273315019440
- Khalitov Z., Khadiev A., Valeeva D., Pashin D. Quantitative theory of diffraction by ordered coaxial nanotubes: reciprocal-lattice and diffraction pattern indexing. Acta Crystallographica Section A: Foundations and Advances. 2016;72(6):684–695. doi: 10.1107/S2053273316012006
- Khadiev A., Khalitov Z. Quantitative theory of diffraction by cylindrical scroll nanotubes. Acta Crystallographica Section A: Foundations and Advances. 2018;74(3):233–244. doi: 10.1107/S2053273318003169
- Методы электронной микроскопии минералов / Г. С. Грицаенко, Б. Б. Звягин, Р. Б. Боярская и др. М.: Наука, 1969. 311с. Gritsaenko G.S., Zvyagin B.B., Boyarskaya R.B. et al. Methods of electron microscopy of minerals. Moscow, Nauka; 1969. 311 p. (In Russ.).
Supplementary files
