Анализ, моделирование и прогноз урожайности сельскохозяйственных культур для Кабардино-Балкарской Республики с использованием аппарата нечеткой логики

Обложка

Цитировать

Полный текст

Аннотация

С применением ранее созданных компьютерных нечетко-логических моделей на основе погодно-климатических данных метеостанций Кабардино-Балкарской Республики предгорной (Нальчик и Баксан) и степной (Прохладный и Терек) зон и урожайности сельскохозяйственных культур (озимая и яровая пшеница, кукуруза, подсолнечник, просо, овес), выращиваемых на территориях, контролируемых этими станциями, проанализированы зависимости урожайности сельскохозяйственных культур от вариаций природно-климатических факторов и дан конкретный прогноз урожайности на сельскохозяйственный год вперед для предгорной зоны, хотя некоторые прогнозные рекомендации действительны и для других зон. Оригинальность метода состоит в том, что в виде входных параметров модели предикторов использованы рассчитанные ранее прогнозные значения метеопараметров на следующий сельскохозяйственный год, а на выходе в качестве предиктантов получены прогнозные значения урожайности культур.

Об авторах

Руслан Мусарбиевич Бисчоков

Кабардино-Балкарский государственный аграрный университет им. В.М. Кокова

Автор, ответственный за переписку.
Email: rusbis@mail.ru

кандидат физико-математических наук, доцент кафедры высшей математики и информатики

г. Нальчик, Российская Федерация

Список литературы

  1. Borisenkov EP. Communication of temperature and rainfall with productivity. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 471. Leningrad: Gidrometeoizdat publ.; 1984; (471):46—50. (In Russ.)
  2. Zamyatin SA, Izmestyev VM, Vinogradov GM, Lapshin YA, Vinogradova IA. Tendention in climate change influencing agriculture. Zemledelie. 2010; (4):13—14. (In Russ.)
  3. Fukui H. Climatic variability and agriculture in tropical moist regions. In: Proceedings of the World Climate Conference, World Meteorological Association Report № 537. Geneva; 1979. p.426—479.
  4. Bischokov RM, Adzhiyeva AA, Kudayev RH, Tukova FH, Tkhaytsukhova SR. Metodika minimizatsii riska snizheniya proizvodstva produktsii sel’skogo khozyaistva [Minimization of risk of decrease in agriculture production]. Nalchik: Kabardino-Balkarian SAU publ.; 2014. (In Russ.)
  5. Bischokov RM. Climate features of the piedmont, steppe and mountain zones of the Kabardino-Balkarian republic in winter period. Vestnik Kurganskoj GSHA. 2018; (2):18—23. (In Russ.)
  6. Mirmovich EG. Forecasting of emergency situations and risks as a scientific and practical task. In: Problemy bezopasnosti pri chrezvychainykh situatsiyakh. Vypusk 1 [Security concerns at emergency situations. Issue 1]. Moscow: VINITI publ.; 2003. p.142—146. (In Russ.)
  7. Yudin MI, Mescherskaya AV. Some estimates of the natural components of both predictors and predictants. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 273. Leningrad: Gidrometeoizdat publ.; 1972. p.3—15. (In Russ.)
  8. Yudin MI, Blazhevich VG, Repinskaya RP. Some questions of selection of significant predictors. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 273. Leningrad: Gidrometeoizdat publ.; p.16—28. (In Russ.)
  9. Zadeh L. Outline of a new approach to the analysis of complex systems and decision processes. In: Matematika segodnya [Math today]. Moscow: Znanie publ.; 1974. p.5—19. (In Russ.)
  10. Shtovba SD. Vvedenie v teoriyu nechetkikh mnozhestv i nechetkuyu logiku [Introduction to the theory of fuzzy sets and fuzzy logic]. Available from: http://www.matlab.exponenta.ru [Accessed 26th February 2020]. (In Russ.)
  11. Mirmovich EG, Zharenov AB. Analyses of the decision making support problem on actions in crisis situations in conditions of uncertainty. Civil security technology. 2007; (3):82—89.
  12. Bischokov R, Apazhev A, Trukhachev V, Didanova E. Method of minimizing the risk of reducing the production of agricultural products by means of fuzzy logic. In: Advances in Intelligent Systems Research. International Scientific and Practical Conference «Digitization of Agriculture — Development Strategy», Vol. 167. Atlantis Press; 2019. p.401—404. doi: 10.2991/ispc-19.2019.89
  13. Bischokov RM, Adzhiyeva AA, Tkhaytsukhova SR. Application of fuzzy logic for risk analysis in agrarian sector. Vestnik Kurganskoj GSHA. 2014; (3):57—60.
  14. Waongo M, Laux P, Traore SB, Sanon M, Kunstmann H. A crop model and fuzzy rule based approach for optimizing maize planting dates in Burkina Faso, West Africa. Journal of Applied Meteorology and Climatology. 2014; 53(3):598—613. doi: 10.1175/JAMC-D-13-0116.1

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).