Анализ, моделирование и прогноз урожайности сельскохозяйственных культур для Кабардино-Балкарской Республики с использованием аппарата нечеткой логики

Обложка

Цитировать

Полный текст

Аннотация

С применением ранее созданных компьютерных нечетко-логических моделей на основе погодно-климатических данных метеостанций Кабардино-Балкарской Республики предгорной (Нальчик и Баксан) и степной (Прохладный и Терек) зон и урожайности сельскохозяйственных культур (озимая и яровая пшеница, кукуруза, подсолнечник, просо, овес), выращиваемых на территориях, контролируемых этими станциями, проанализированы зависимости урожайности сельскохозяйственных культур от вариаций природно-климатических факторов и дан конкретный прогноз урожайности на сельскохозяйственный год вперед для предгорной зоны, хотя некоторые прогнозные рекомендации действительны и для других зон. Оригинальность метода состоит в том, что в виде входных параметров модели предикторов использованы рассчитанные ранее прогнозные значения метеопараметров на следующий сельскохозяйственный год, а на выходе в качестве предиктантов получены прогнозные значения урожайности культур.

Об авторах

Руслан Мусарбиевич Бисчоков

Кабардино-Балкарский государственный аграрный университет им. В.М. Кокова

Автор, ответственный за переписку.
Email: rusbis@mail.ru

кандидат физико-математических наук, доцент кафедры высшей математики и информатики

г. Нальчик, Российская Федерация

Список литературы

  1. Borisenkov EP. Communication of temperature and rainfall with productivity. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 471. Leningrad: Gidrometeoizdat publ.; 1984; (471):46—50. (In Russ.)
  2. Zamyatin SA, Izmestyev VM, Vinogradov GM, Lapshin YA, Vinogradova IA. Tendention in climate change influencing agriculture. Zemledelie. 2010; (4):13—14. (In Russ.)
  3. Fukui H. Climatic variability and agriculture in tropical moist regions. In: Proceedings of the World Climate Conference, World Meteorological Association Report № 537. Geneva; 1979. p.426—479.
  4. Bischokov RM, Adzhiyeva AA, Kudayev RH, Tukova FH, Tkhaytsukhova SR. Metodika minimizatsii riska snizheniya proizvodstva produktsii sel’skogo khozyaistva [Minimization of risk of decrease in agriculture production]. Nalchik: Kabardino-Balkarian SAU publ.; 2014. (In Russ.)
  5. Bischokov RM. Climate features of the piedmont, steppe and mountain zones of the Kabardino-Balkarian republic in winter period. Vestnik Kurganskoj GSHA. 2018; (2):18—23. (In Russ.)
  6. Mirmovich EG. Forecasting of emergency situations and risks as a scientific and practical task. In: Problemy bezopasnosti pri chrezvychainykh situatsiyakh. Vypusk 1 [Security concerns at emergency situations. Issue 1]. Moscow: VINITI publ.; 2003. p.142—146. (In Russ.)
  7. Yudin MI, Mescherskaya AV. Some estimates of the natural components of both predictors and predictants. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 273. Leningrad: Gidrometeoizdat publ.; 1972. p.3—15. (In Russ.)
  8. Yudin MI, Blazhevich VG, Repinskaya RP. Some questions of selection of significant predictors. In: Proceedings of Voeikov Main Geophysical Observatory. Issue 273. Leningrad: Gidrometeoizdat publ.; p.16—28. (In Russ.)
  9. Zadeh L. Outline of a new approach to the analysis of complex systems and decision processes. In: Matematika segodnya [Math today]. Moscow: Znanie publ.; 1974. p.5—19. (In Russ.)
  10. Shtovba SD. Vvedenie v teoriyu nechetkikh mnozhestv i nechetkuyu logiku [Introduction to the theory of fuzzy sets and fuzzy logic]. Available from: http://www.matlab.exponenta.ru [Accessed 26th February 2020]. (In Russ.)
  11. Mirmovich EG, Zharenov AB. Analyses of the decision making support problem on actions in crisis situations in conditions of uncertainty. Civil security technology. 2007; (3):82—89.
  12. Bischokov R, Apazhev A, Trukhachev V, Didanova E. Method of minimizing the risk of reducing the production of agricultural products by means of fuzzy logic. In: Advances in Intelligent Systems Research. International Scientific and Practical Conference «Digitization of Agriculture — Development Strategy», Vol. 167. Atlantis Press; 2019. p.401—404. doi: 10.2991/ispc-19.2019.89
  13. Bischokov RM, Adzhiyeva AA, Tkhaytsukhova SR. Application of fuzzy logic for risk analysis in agrarian sector. Vestnik Kurganskoj GSHA. 2014; (3):57—60.
  14. Waongo M, Laux P, Traore SB, Sanon M, Kunstmann H. A crop model and fuzzy rule based approach for optimizing maize planting dates in Burkina Faso, West Africa. Journal of Applied Meteorology and Climatology. 2014; 53(3):598—613. doi: 10.1175/JAMC-D-13-0116.1

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».