AI-Driven Innovation in Russian Youth Policy: Strategies, Mechanisms, and Practices

Capa

Citar

Texto integral

Resumo

How Artificial Intelligence (AI) enhances the effectiveness of Russian youth policy implementation amidst technological advancements and digital transformation? The study’s novelty lies in its comprehensive analysis of specific mechanisms for integrating AI into the Russian youth policy system, considering national strategic priorities. Furthermore, it identifies personalized approaches to youth human capital management through AI. Analyzing the functional potential of AI technologies, the Russian Youth Policy Strategy to 2030, and relevant practices of applying digital technologies with AI systems in the context of youth policy, the authors highlight three key areas for AI implementation: 1) developing strategic monitoring and forecasting systems for youth vulnerabilities, 2) acceleration of transformation processes in the sphere of implementation of youth policy through the introduction of digital products with elements of artificial intelligence, and 3) optimizing processes for engaging youth in social dynamics, intensification of civic engagement. The article presents examples of successful national and international scenarios in these areas and proposes new approaches to enhance youth policy strategy implementation through innovative intelligent technologies. Significant limitations of AI application are noted, including ethical concerns and methodological challenges. The study outlines key risks in developing legislative initiatives aimed at regulating the use of AI within the youth human capital management ecosystem, emphasizing the importance of balancing innovation promotion with the protection of citizens’ rights and freedoms in the digital environment.

Sobre autores

Karina Strebkova

Coordination Center for TLD .RU/.РФ

Email: streb.karina@gmail.com
ORCID ID: 0009-0001-7017-1310

Master in Psychology, Member of The Youth Council

Moscow, Russian Federation

Daria Maltseva

Saint-Petersburg State University; RUDN University

Autor responsável pela correspondência
Email: maltseva-da@rudn.ru
ORCID ID: 0000-0002-0213-6919

Ph.D. in Political Science, Associate Professor of the Department of Theory and Philosophy of Politics, Deputy Dean for Youth Policy of the Faculty of Political Science, St Petersburg State University; Associate Professor of the Department of Comparative Political Science, RUDN University

St Petersburg, Russian Federation; Moscow, Russian Federation

Daniil Fedotov

Saint-Petersburg State University; The Legislative Assembly of Saint Petersburg

Email: phedotovdaniil@mail.ru
ORCID ID: 0000-0001-8338-6751

postgraduate student at the Faculty of Political Science, St Petersburg State University; the Lead Specialist of the Office of the Chairman of the Legislative Assembly of St Petersburg

St Petersburg, Russian Federation

Bibliografia

  1. Agamirzian, L., Gokhberg, L., Zinina, T., & Rudnik, P. (Eds.) (2024). Digital transformation: Effects and risks in new conditions. Moscow: HSE. (In Russian).
  2. Badma-­Garyaev, A.M., & Khodykova, N.V. (2021). Definition essence functions of AI and ecosystem. Bulletin of the IIRAT, 2(43), 13–19. (In Russian). https://doi.org/10.24412/2071-7830-2021-243-13-19 EDN: EEKVKP
  3. Blank, G., & Groselj, D. (2014). Dimension of internet use: Amount, variety, and types. Information, Communication & Society, 17, 417–435. http://dx.doi.org/10.1080/1369118X.2014.889189.
  4. Boyd, D., & Crawford, K. (2012). Critical questions for Big Data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication, & Society, 15, 662–679. http://dx.doi.org/10.1080/1369118X.2012.678878.
  5. Brownsword, R. (2022). Law, authority, and respect: Three waves of technological disruption. Law, Innovation and Technology, 14(1), 5–40. https://doi.org/10.1080/17579961.2022.2047517 EDN: NQTUJM
  6. Choi, K.S., Kim, S., Kim, B.H., Jeon, H.J., Kim, J.H., Jang, J.H., et al. (2021). Deep graph neural network-­based prediction of acute suicidal ideation in young adults. Sci Rep, 11, 15828. https://doi.org/10.1038/s41598-021-95102-7 EDN: UXERZC
  7. Dey, P.K., Chowdhury, S., Abadie, A., Yaroson, E.V., & Sarkar, S. (2024). Artificial intelligence-­driven supply chain resilience in Vietnamese manufacturing small-­and medium-­sized enterprises. International Journal of Production Research, 62(15), 5417–5456. https://doi.org/10.1080/00207543.2023.2179859
  8. Dourish, P., & Bell, G. (2011). Divining a digital future: Mess and mythology in ubiquitous computing. MIT Press.
  9. Dubina, A.S. (2020). Transformation of the role of human capital in the digital economy in the views of young people in the Volga region. Models, systems, networks in economics, technology, nature and society, 2(34), 49–59. (In Russian). https://doi.org/10.21685/2227-8486-2020-2-4 EDN: TVSROK
  10. Dwivedi, Y.K., Hughes, L., Ismagilova, E., et al (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 EDN: XGOZJV
  11. Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis, I.N., et al. (2020). Eight grand challenges in socio-­environmental systems modeling. Socio-­Environmental Systems Modelling, 2. Article no. 16226. https://doi.org/10.18174/sesmo.2020a16226 EDN: BJUBCL
  12. Gavrilova, Yu.V., Motorina, I.E., & Pavlova, T.E. (2022). Social expectations of the introduction of artificial intelligence technologies in education (on the materials of a questionnaire survey of students of the Moscow state technical university named after N.E. Bauman). Medicine. Sociology. Philosophy. Applied research, 1, 20–25. (In Russian). EDN: UTUNHW
  13. Kaye, D. (2019). Speech police: The global struggle to govern the Internet. Columbia Global Reports.
  14. Klyachko, T.A., & Semionova, E.A. (2018). Contribution of education to the socio-­economic development of the subjects of the Russian Federation. Economy of Region, 14(3), 791–805. (In Russian). https://doi.org/10.17059/2018-3-8 EDN: UZBOSR
  15. Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006
  16. McCarthy, J. (2007). What is artificial intelligence? Stanford University, Computer Science Department. Retrieved April, 10, 2025 from: http://jmc.stanford.edu/articles/whatisai/whatisai.pdf.
  17. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607
  18. Mokshanov, M.V. (2024). The use of artificial intelligence in data analysis: An overview of the current state and future directions. Universum: technical sciences, 5(122), 40–48. (In Russian). https://doi.org/10.32743/UniTech.2024.122.5.17513 EDN: ZCNAQA
  19. Novichkov, N.V., Novichkova, A.V., & Nazarov, V.A. (2025). Innovative potential of youth: Theoretical and practical aspects of the study. Academic Council, 22(1), 16–29. (In Russian). https://doi.org/10.33920/nik-02-2501-02 EDN: BWCUWC
  20. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. New York: Crown Publishers. http://dx.doi.org/10.5860/crl.78.3.403.
  21. Qureshi, S. (2023). Digital transformation for development: A human capital key or system of oppression? Information Technology for Development, 29(4), 423–434. (In Russian). https://doi.org/10.1080/02681102.2023.2282269 EDN: HPDKPO
  22. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed). Pearson.
  23. Schwab, K. (2017). The fourth industrial revolution. Crown Publishing Group, New York.
  24. Simankov, V.S., & Teploukhov, S.V. (2020). Analytical study of methods and algorithms of artificial intelligence. The Bulletin of the Adyghe State University, the series “Natural-­Mathematical and Technical Sciences”, (3), 16–25. (In Russian). EDN: OEJMTO
  25. Volodenkov, S.V., Belokonev, S.Y., & Suslova, A.A. (2021). How Russian youth consume information: Case study of the political science students at the Financial University. RUDN Journal of Political Science, 23(1), 31–46. https://doi.org/10.22363/2313-1438-2021-23-1-31-46 EDN: NBHSIK

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».