Developmental Changes in Presentation Rate Effect on Auditory Event-Related Potential through Childhood to Adulthood
- Авторлар: Kostanian D.G.1, Rebreikina A.B.1,2, Sysoeva O.V.1,2,3
-
Мекемелер:
- Center for Cognitive Sciences, Sirius University of Science and Technology
- Institute of Higher Nervous Activity and Neurophysiology, RAS
- HSE University
- Шығарылым: Том 21, № 1 (2024)
- Беттер: 96-114
- Бөлім: INTERDISCIPLINARITY IN PSYCHOLOGY: NEW RESEARCH TRENDS
- URL: https://journal-vniispk.ru/2313-1683/article/view/326326
- DOI: https://doi.org/10.22363/2313-1683-2024-21-1-96-114
- EDN: https://elibrary.ru/YFUSAJ
- ID: 326326
Дәйексөз келтіру
Толық мәтін
Аннотация
In adults, the rate of stimuli presentation has been shown to play a critical role for the event related potentials (ERP): its components become larger as presentation rate decreases. But there are few works evaluating developmental changes of this ERP modulation that might provide insights into basic forms of learning. The current study aims to examine the developmental changes in the effect of the presentation rate on ERP. Participants (N = 48) of four age groups (2-7, 8-11, 12-17 and 18-35 years old) were presented with auditory tone (1000 Hz) at three different stimulus onset asynchrony (SOA): 0.9, 1.8, and 3.6 s. During stimuli presentation 28-channels electroencephalogram (EEG) was recorded. Amplitude of ERP components increased with SOA prolongation. However, this effect was differently pronounced in each of the age groups, depending on the component and cortical site. N1P1 amplitude was increased from 0.9 to 1.8 s SOA in two oldest groups (12-17 years old and adults) predominantly at fronto-central sites. Similar increase demonstrated P2N1 component but starting from younger group (8-11 years old). Only the adult group was characterized by a significant increase in N1P1 and P2N1 amplitudes with SOA increase from 1.8 to 3.6 s. Thus, the effect of presentation rate on ERP is not fully mature even at adolescence and depends on the component with P2N1 amplitude showing modulations at younger age.
Авторлар туралы
Daria Kostanian
Center for Cognitive Sciences, Sirius University of Science and Technology
Хат алмасуға жауапты Автор.
Email: daria.kost17@gmail.com
ORCID iD: 0000-0003-1436-8909
SPIN-код: 2460-5042
Junior Researcher, Sirius Center for Cognitive Sciences
1 Olimpiyskiy Ave., Federal Territory “Sirius”, 354340, Russian FederationAnna Rebreikina
Center for Cognitive Sciences, Sirius University of Science and Technology; Institute of Higher Nervous Activity and Neurophysiology, RAS
Email: anna.rebreikina@gmail.com
ORCID iD: 0000-0001-5714-2040
SPIN-код: 2284-9088
Ph.D. in Biology, Researcher, Sirius Center for Cognitive Sciences, Sirius University of Science and Technology ; Institute of Higher Nervous Activity and Neurophysiology
1 Olimpiyskiy Ave., Federal Territory “Sirius”, 354340, Russian Federation; 5A Butlerova St., Moscow, 117485, Russian FederationOlga Sysoeva
Center for Cognitive Sciences, Sirius University of Science and Technology; Institute of Higher Nervous Activity and Neurophysiology, RAS; HSE University
Email: olga.v.sysoeva@gmail.com
ORCID iD: 0000-0002-4005-9512
SPIN-код: 2139-6619
Ph.D. in Psychology, Head of the Laboratory of Neurobiology of Typical and Atypical Development, Sirius Center for Cognitive Sciences, Sirius University of Science and Technology ; Institute of Higher Nervous Activity and Neurophysiology ; Faculty of Biology and Biotechnology, HSE University
1 Olimpiyskiy Ave., Federal Territory “Sirius”, 354340, Russian Federation; 5A Butlerova St., Moscow, 117485, Russian Federation; 33 Profsoyuznaya St., bldg. 4, Moscow, 117418, Russian FederationӘдебиет тізімі
- Bishop, D. V., Hardiman, M., Uwer, R., & von Suchodoletz, W. (2007). Maturation of the long-latency auditory ERP: Step function changes at start and end of adolescence. Developmental Science, 10(5), 565-575. https://doi.org/10.1111/j.1467-7687.2007.00619.x
- Bishop, D. V. M. (2007). Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: Where are we, and where should we be going? Psychological Bulletin, 133(4), 651-672. https://doi.org/10.1037/0033-2909.133.4.651
- Bruneau, N., Roux, S., Guerin, P., Barthelemy, C., & Lelord, G. (1997). Temporal prominence of auditory evoked potentials (N1 wave) in 4-8-year-old children. Psychophysiology, 34(1), 32-38.
- Čeponiene, R., Cheour, M., & Näätänen, R. (1998). Interstimulus interval and auditory event-related potentials in children: Evidence for multiple generators. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(4), 345-354. https://doi.org/10.1016/S0168-5597(97)00081-6
- Čeponiene, R., Rinne, T., & Näätänen, R. (2002). Maturation of cortical sound processing as indexed by event-related potentials. Clinical Neurophysiology, 113(6), 870-882. https://doi.org/10.1016/S1388-2457(02)00078-0
- Eggermont, J. J. (1988). On the rate of maturation of sensory evoked potentials. Electroencephalography and Clinical Neurophysiology, 70(4), 293-305.
- Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123(2), 249-252.
- Gilley, P. M., Sharma, A., Dorman, M., & Martin, K. (2005). Developmental changes in refractoriness of the cortical auditory evoked potential. Clinical Neurophysiology, 116(3), 648-657.
- Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., & Vaughan Jr, H. G. (2001). Spatiotemporal maturation of the central and lateral N1 components to tones. Developmental Brain Research, 129(2), 147-155.
- Guiraud, J. A., Kushnerenko, E., Tomalski, P., Davies, K., Ribeiro, H., Johnson, M. H., & BASIS team. (2011). Differential habituation to repeated sounds in infants at high risk for autism. Neuroreport, 22(16), 845-849.
- Jaffe-Dax, S., Frenkel, O., & Ahissar, M. (2017). Dyslexics’ faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation. eLife, 6, e20557. https://doi.org/10.7554/eLife.20557
- Kostanian, D., Rebreikina, A., Voinova, V., & Sysoeva, O. (2023). Effect of presentation rate on auditory processing in Rett syndrome: Event-related potential study. Molecular Autism, 14(1), 40. https://doi.org/10.1186/s13229-023-00566-1
- Lieder, I., Adam, V., Frenkel, O., Jaffe-Dax, S., Sahani, M., & Ahissar, M. (2019). Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nature Neuroscience, 22(2), 256-264. https://doi.org/10.1038/s41593-018-0308-9
- López-Caballero, F., Coffman, B., Seebold, D., Teichert, T., & Salisbury, D. F. (2023). Intensity and inter-stimulus-interval effects on human middleand long-latency auditory evoked potentials in an unpredictable auditory context. Psychophysiology, 60(4), e14217. https://doi.org/10.1111/psyp.14217
- Lu, Z., Williamson, S., & Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science, 258(5088), 1668-1670. https://doi.org/10.1126/science.1455246
- Millin, R., Kolodny, T., Flevaris, A. V., Kale, A. M., Schallmo, M.-P., Gerdts, J., Bernier, R. A., & Murray, S. (2018). Reduced auditory cortical adaptation in autism spectrum disorder. eLife, 7, e36493. https://doi.org/10.7554/eLife.36493
- Moore, J. K. (2002). Maturation of human auditory cortex: Implications for speech perception. Annals of Otology, Rhinology & Laryngology, 111(5_suppl), 7-10.
- Moore, J. K., & Guan, Y.-L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297-311.
- Paetau, R., Ahonen, A., Salonen, O., & Sams, M. (1995). Auditory evoked magnetic fields to tones and pseudowords in healthy children and adults. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 12(2), 177-185.
- Pereira, D. R., Cardoso, S., Ferreira-Santos, F., Fernandes, C., Cunha-Reis, C., Paiva, T. O., Almeida, P. R., Silveira, C., Barbosa, F., & Marques-Teixeira, J. (2014). Effects of inter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential. International Journal of Psychophysiology, 94(3), 311-318. https://doi.org/10.1016/j.ijpsycho.2014.09.012
- Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 111(2), 220-236. https://doi.org/10.1016/s1388-2457(99)00236-9
- Portnova, G., Rebreikina, A., & Martynova, O. (2022). The ages of zone of proximal development for retrospective time assessment and anticipation of time event. Applied Neuropsychology: Child, 11(4), 761-770. https://doi.org/10.1080/21622965.2021.1961084
- Ruchat, P., Schlaepfer, J., Delabays, A., Hurni, M., Milne, J., & Von Segesser, L. K. (2002). Left atrial radiofrequency compartmentalization for chronic atrial fibrillation during heart surgery. Thoracic and Cardiovascular Surgeon, 50(3), 155-159. https://doi.org/10.1055/s-2002-32411
- Ruhnau, P., Herrmann, B., Maess, B., & Schröger, E. (2011). Maturation of obligatory auditory responses and their neural sources: Evidence from EEG and MEG. NeuroImage, 58(2), 630-639. https://doi.org/10.1016/j.neuroimage.2011.06.050
- Sams, M., Hari, R., Rif, J., & Knuutila, J. (1993). The Human Auditory Sensory Memory Trace Persists about 10 sec: Neuromagnetic Evidence. Journal of Cognitive Neuroscience, 5(3), 363-370. https://doi.org/10.1162/jocn.1993.5.3.363
- Sharma, A., Kraus, N., J. McGee, T., & Nicol, T. G. (1997). Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(6), 540-545. https://doi.org/10.1016/S0168-5597(97)00050-6
- Sussman, E., Steinschneider, M., Gumenyuk, V., Grushko, J., & Lawson, K. (2008). The maturation of human evoked brain potentials to sounds presented at different stimulus rates. Hearing Research, 236(1), 61-79. https://doi.org/10.1016/j.heares.2007.12.001
- Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24(46), 10440-10453.
- Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 1026. https://doi.org/10.21105/joss.01026
- Wunderlich, J. L., Cone-Wesson, B. K., & Shepherd, R. (2006). Maturation of the cortical auditory evoked potential in infants and young children. Hearing Research, 212(1), 185-202. https://doi.org/10.1016/j.heares.2005.11.010
Қосымша файлдар

