Neural activity of the subthalamic nucleus during voluntary movements in patients with Parkinson’s disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Microelectrode recording (MER) during electrode implantation for deep brain stimulation (DBS) can determine the boundaries of the subthalamic nucleus (STN), and track neural activity during rest and voluntary movement in Parkinson’s disease (PD) patients. However, the functional role of STN in motor control remains unclear, despite its effectiveness in stimulation.

Single unit activity of STN was recorded in 16 patients with PD during implantation of deep brain stimulation electrodes. Electromyograms of forearm muscles and a phonogram featuring verbal commands were simultaneously recorded with MER. The patients were instructed to perform motor tests involving clenching their hand into a fist. Out of the 560 neurons studied, 93 (16.6%) responded to motor tasks. The registered neurons were classified into three patterns using the hierarchical clustering method of histograms of interspike interval density — namely, tonic, burst, and pause patterns.

Sensitive neurons were classified according to their responses, with activation (76.9%) and inhibition (23.1%) being the two identified types. In 90% of cases, neuron activation preceded movement. Of the responses, 53.8% were classified as tonic and 46.2% as phasic. Two thirds of inhibitory responses were advanced, occurring 0.2–0.3 seconds before movement onset. One third of neurons were activated after movement initiation with a delay of 0.05–0.2 seconds. 83.3% of the inhibitory neurons responded tonically, while the remaining 16.7% responded phasically. Notably, all phasic reactions occurred before the onset of movement.

A comparison of the parameters of sensitive and non-sensitive neurons revealed several differences. The findings suggest a potential physiological distinction between the two neuron types. All three patterns of activity were present in both types of neurons, but sensitive neurons exhibited a wider representation of pause neurons (57.9% vs. 49.5%). Additionally, burst and pause neurons responded to movements that featured significantly lower variance of multiple activity parameters, such as firing rate, burst index, mean burst length, and oscillation scores in the 8–12 and 12–20 Hz range. The distribution of sensitive neurons along the electrode trajectory through the subthalamic nucleus was analyzed. Sensitive neurons were located significantly more dorsally compared to non-sensitive neurons, and no sensitive pause cells were observed in the ventral half of the STN.

Based on our findings, it is presumed that the pause pattern plays a critical role in both motor control and its related disorders in Parkinson’s disease. A diverse range of neuronal responses suggests a high degree of heterogeneity among STN neurons implicated in motor control. The presence of both delayed and advanced neural responses suggests that STN involvement in motor control encompasses both the preparation and initiation of movement, as well as the regulation of ongoing movements via afferent feedback. The range of neural responses aligns with the dynamic model of basal ganglia, which suggests that STN can perform distinct functional roles during different stages of movement, including initiation, control, and completion.

Full Text

Microelectrode recording (MER) during electrode implantation for deep brain stimulation (DBS) can determine the boundaries of the subthalamic nucleus (STN), and track neural activity during rest and voluntary movement in Parkinson’s disease (PD) patients. However, the functional role of STN in motor control remains unclear, despite its effectiveness in stimulation.

Single unit activity of STN was recorded in 16 patients with PD during implantation of deep brain stimulation electrodes. Electromyograms of forearm muscles and a phonogram featuring verbal commands were simultaneously recorded with MER. The patients were instructed to perform motor tests involving clenching their hand into a fist. Out of the 560 neurons studied, 93 (16.6%) responded to motor tasks. The registered neurons were classified into three patterns using the hierarchical clustering method of histograms of interspike interval density — namely, tonic, burst, and pause patterns.

Sensitive neurons were classified according to their responses, with activation (76.9%) and inhibition (23.1%) being the two identified types. In 90% of cases, neuron activation preceded movement. Of the responses, 53.8% were classified as tonic and 46.2% as phasic. Two thirds of inhibitory responses were advanced, occurring 0.2–0.3 seconds before movement onset. One third of neurons were activated after movement initiation with a delay of 0.05–0.2 seconds. 83.3% of the inhibitory neurons responded tonically, while the remaining 16.7% responded phasically. Notably, all phasic reactions occurred before the onset of movement.

A comparison of the parameters of sensitive and non-sensitive neurons revealed several differences. The findings suggest a potential physiological distinction between the two neuron types. All three patterns of activity were present in both types of neurons, but sensitive neurons exhibited a wider representation of pause neurons (57.9% vs. 49.5%). Additionally, burst and pause neurons responded to movements that featured significantly lower variance of multiple activity parameters, such as firing rate, burst index, mean burst length, and oscillation scores in the 8–12 and 12–20 Hz range. The distribution of sensitive neurons along the electrode trajectory through the subthalamic nucleus was analyzed. Sensitive neurons were located significantly more dorsally compared to non-sensitive neurons, and no sensitive pause cells were observed in the ventral half of the STN.

Based on our findings, it is presumed that the pause pattern plays a critical role in both motor control and its related disorders in Parkinson’s disease. A diverse range of neuronal responses suggests a high degree of heterogeneity among STN neurons implicated in motor control. The presence of both delayed and advanced neural responses suggests that STN involvement in motor control encompasses both the preparation and initiation of movement, as well as the regulation of ongoing movements via afferent feedback. The range of neural responses aligns with the dynamic model of basal ganglia, which suggests that STN can perform distinct functional roles during different stages of movement, including initiation, control, and completion.

ADDITIONAL INFORMATION

Funding sources. The study was supported by RSF (grant No. 22-15-00344).

×

About the authors

V. I. Filyushkina

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: filyushkina.veronika@gmail.com
Russian Federation, Moscow

Е. М. Belova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: filyushkina.veronika@gmail.com
Russian Federation, Moscow

S. V. Usova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: filyushkina.veronika@gmail.com
Russian Federation, Moscow

A. A. Tomskiy

Burdenko National Scientific and Practical Center for Neurosurgery

Email: filyushkina.veronika@gmail.com
Russian Federation, Moscow

A. S. Sedov

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: filyushkina.veronika@gmail.com
Russian Federation, Moscow

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».