“Common Denominator” in Solving Multi-Factory Problems by Intelligent Systems

封面

如何引用文章

全文:

详细

The most important property, a distinctive feature of any intelligent system, is its decision-making ability. In this case, the more complex the problem to be solved, the more and more diverse the initial data, and the more critical it is that the decision to be made was comprehensively considered and evaluated. In many cases, simultaneously arriving various initial data, if considered separately, and decisions based on such consideration lead to completely different results, often contradicting each other. Therefore, in the process of development and implementation of artificial intelligence (AI), it is especially important to investigate the “mechanism” of decision-making in conditions of the inconsistency of incoming initial data and the need to establish some generalizing rule, according to which it is possible to find a harmonizing solution taking into account various influencing factors. It is evident that when establishing the rules of decision-making, it is necessary to strive for a “positive” result from the point of view of the problem being solved. This undoubtedly requires analyzing the consequences of the decision made in a set time scale, which can be provided by appropriate feedback that will allow us to make the necessary corrective actions. Artificial intelligence in modern forms of practical realization has, as a rule, a digital embodiment. It should be taken into account that the digital representation of data inevitably shows an inaccurate display of initial values when processes of a continuous nature are considered and analyzed. Since a digital model has certain limitations and characteristic properties when analyzing and processing initial data, it is logical to assume that for this reason, there can be some general approach, some general rule, according to which a decision is made in the conditions of diverse initial data and the need to take into account the relevant consequences after the decision is made. This paper attempts to find a decision-making mechanism, harmonizing it according to the incoming external and available internal input data.

作者简介

Artem Adzhemov

Moscow Technical University of Communications and Informatics

Email: asa@mtuci.ru
ORCID iD: 0000-0002-1616-323X

Dr. Sciences, Professor, President-Chairman of the Board of Trustees, Head of Department of General Theory of Communications

8а Aviamotornaya St., 111024, Moscow, Russian Federation

Alla Denisova

National Research University MPEI

编辑信件的主要联系方式.
Email: den-alla@yandex.ru
ORCID iD: 0000-0002-4934-5267

PhD in Philosophy, Associate Professor, Associate Professor, Department of Philosophy, Psychology and Sociology

14/1 Krasnokazarmennaya St., 111250, Moscow, Russian Federation

参考

  1. Timofeev AV. Essence and problems of artificial intelligence in the context of modern scientific and philosophical conceptions. Bulletin of Moscow Region State University. Series: Philosophical Sciences. 2020;(2):127-133. (In Russian). https://doi.org/10.18384/2310-7227-2020-2-127-133
  2. Ioseliani AD, Tskhadadze NV. Artificial intelligence: socio-philosophical comprehension. Medicine. Sociology. Philosophy. Applied research. 2019;(2):196-202. (In Russian).
  3. Zabezhailo MI, Borisov VV. On the interpretation of the concept of "artificial intelligence". Speech Technologies. 2022;(1):5-18. (In Russian).
  4. Abramova AV. Ethics in the field of artificial intelligence - from discussion to scientific justification and practical application: an analytical report. Moscow: MGIMO-University; 2021. (In Russian).
  5. Raykov AN. Subjectivity of explainable artificial intelligence. Russian Journal of Philosophical Sciences. 2022;65(1):72-90. (In Russian). https://doi.org/10.30727/0235-1188-2022-65-1-72-90
  6. Dubrovsky DI. The Task of the Creation of Artificial General Intelligence and the Problem of Consciousness. Russian Journal of Philosophical Sciences. 2021;64(1):13-44. (In Russian). https://doi.org/10.30727/0235-1188-2021-64-1-13-44
  7. Lepskiy VE. Artificial Intelligence in Subject-Oriented Control Paradigms. Russian Journal of Philosophical Sciences. 2021;64(1):88-101. (In Russian). https://doi.org/10.30727/0235-1188-2021-64-1-88-101
  8. Heaven WD. Why asking an AI to explain itself can make things worse. MIT Technology Review. Available from: https://www.technologyreview.com/2020/01/29/304857/why-asking-an-ai-to-explain-itself-can-make-things-worse/ (accessed: 03.08.2023).
  9. Ekman P. Psychology of emotions. Peter; 2019. (In Russian).
  10. Izard Carroll E. Psychology of emotions. Peter; 2006. (In Russian).
  11. Ermakova AA, Tumasyan TA. The influence of negative emotions on the human body. Vestnik nauki. 2019;3(12):9-11. (In Russian).

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».