Monitoring of the development of blue-green algae in the Kuibyshev reservoir using remote sensing indices

Capa

Citar

Resumo

The research presents the results of remote monitoring of blue-green algae of the Kuibyshev reservoir, leading to eutrophication of the reservoir. Multispectral images were taken by the European Space Agency’s Sentinel-2 remote sensing satellite and were processed by using QGIS software. Satellite images were processed using spectral indices. After using several spectral indices, the three most informative ones were selected: NDVI, NDWI and SIPI. The usage of processed images made it possible to define the boundaries of the distribution of blue-green algae more clearly, as well as the zones of the most intensive development of biomass. The use of several spectral indices made it possible to determine the most suitable data for the usage under adverse meteorological conditions. The analysis of the processed satellite images makes it possible to assess the intensity of the development of blue-green algae. This is the basis for the development of a forecast model of biomass changes in the reservoirs of the middle zone of the Russian Federation.

Sobre autores

Danil Sherstobitov

Samara State Technical University

Email: shersobitovdn@gmail.com
ORCID ID: 0000-0002-9160-5317
Código SPIN: 6822-4868

Ph.D. student of the Department of Chemical Technology and Industrial Ecology

244 Molodogvardeyskaya St, Samara, 443100, Russian Federation

Vasiliy Ermakov

Samara State Technical University

Email: wassiliy@rambler.ru
ORCID ID: 0000-0001-7720-2418
Código SPIN: 5201-1408

Cand. Sc. (Tech.), Associate Professor of the Department of Chemical Technology and Industrial Ecology

244 Molodogvardeyskaya St, Samara, 443100, Russian Federation

Vitaliy Pystin

Samara State Technical University

Email: vitaliy.pystin@yandex.ru
ORCID ID: 0000-0002-4027-1804
Código SPIN: 8568-1200

Cand. Sc. (Tech.), Associate Professor of the Department of Chemical Technology and Industrial Ecology

244 Molodogvardeyskaya St, Samara, 443100, Russian Federation

Olga Tupitsyna

Samara State Technical University

Autor responsável pela correspondência
Email: olgatupicyna@yandex.ru
ORCID ID: 0000-0003-0638-2700
Código SPIN: 4203-9529

Dr. Sc. (Tech.), Professor of the Department of Chemical Technology and Industrial Ecology

244 Molodogvardeyskaya St, Samara, 443100, Russian Federation

Bibliografia

  1. Davis TW, Berry DL, Boyer GL, Gobler CJ. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae. 2009;8(5):715-725.
  2. Apeldoorn ME, Egmond HP, Speijers GJ, Bakker GJ. Toxins of cyanobacteria. Molecular Nutrition & Food Research. 2007;51:7-60.
  3. Codd G, Morrison L, Metcalf JS. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology. 2005;203:264-272.
  4. Paerl HW, Huisman J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports. 2009;1:27-37.
  5. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs. 2010;8:1650-1680.
  6. Borodulin IV, Milyutkin VA, Rosenberg GS. Development of technologies and technical means for the collection and utilization of blue-green algae. Samara Luka: problems of regional and global ecology. 2016;25(4):123-129. (In Russ.)
  7. Hu C, He M-X. Origin and offshore extent of floating algae in Olympic sailing area. Eos Transactions American Geophysical Union. 2008:89(33):302-303. https://doi.org/10.1029/2008EO330002
  8. Hu C. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment. 2009;113(10):2118-2129.
  9. Siddiqui MD, Zaidi AZ, Abdullah M. Performance assessment of newly developed seaweed enhacing index. Remote Sensing. 2008;11(12):1-14. https://doi.org/10.1029/2008EO330002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).