Surface-enhanced Raman spectroscopy in women with benign and malignant endometrial diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. This study aimed to enhance early detection of endometrial cancer in women and distinguish benign conditions from endometrial cancer using surface-enhanced Raman scattering (SERS) analysis of blood plasma, thus increasing diagnostic efficacy.

Materials and methods. The study of blood plasma from 95 female patients aged 22–79 years was performed. The patients were divided into four groups: group 1 included 29 women with endometrial adenocarcinoma, group 2 included 31 patients with endometrial polyp, group 3 included 10 women with endometrial hyperplasia, and the comparison group consisted of 25 healthy women. Blood plasma was analyzed via SERS, with three Raman spectra recorded per sample. Spectral measurements of the SERS substrate were assessed using dried samples on an experimental bench equipped with the spectrometric system RL785 (LLC “Foton-Bio”, Russia), incorporating a CCD detector, laser radiation source with a wavelength of 785 nm, and ADF U300 microscope (ADF, China). A silver substrate composed of dried silver colloid was used to demonstrate the enhancement effect on the Raman signal from the surface of the blood plasma.

Results. Spectral and specific features that distinguish adenocarcinoma, polyps, and endometrial hyperplasia were identified and evaluated. Spectral and quantitative differences specific to each condition, which are crucial for the differential diagnosis of pathologic tissues, were also identified. The accuracy rates of the optical diagnostics in distinguishing endometrial adenocarcinoma from the control group and endometrial hyperplasia were 87% and 85%, respectively, for the calibration and verification spectral sets (where the sensitivity and specificity were 66% and 92% for the spectral verification set, respectively). The accuracy rates of distinguishing control from endometrial hyperplasia and endometrial adenocarcinoma were 86% and 85%, respectively, and the accuracy of distinguishing endometrial hyperplasia from control and endometrial adenocarcinoma was 81% for the calibration and verification sets of spectra. In addition, the study demonstrated improved accuracy in differentiating adenocarcinoma from hyperplasia, including polyps. The accuracy rate was 93% in the calibration set of spectra, with sensitivity and specificity of 96% and 90%, whereas in the validation set, it was 91%, with sensitivity and specificity of 93% and 88%, respectively.

Conclusions. The study demonstrated the potential use of SERS for differentiating expression patterns in endometrial cancer from those in benign conditions.

About the authors

Vladimir M. Zuev

I.M. Sechenov First Moscow State Medicine University (Sechenov University)

Email: vlzuev@bk.ru
ORCID iD: 0000-0001-8715-2020

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Dmitrii V. Lystsev

I.M. Sechenov First Moscow State Medicine University (Sechenov University)

Author for correspondence.
Email: doc.lyscev@gmail.com
ORCID iD: 0009-0006-3826-3174

Graduate Student

Russian Federation, Moscow

Dmitrii N. Artem’ev

Samara National Research University

Email: artemyevdn@ssau.ru
ORCID iD: 0000-0002-1942-8205

Cand. Sci. (Phys.-Mat.), Assistant Professor

Russian Federation, Samara

Lyudmila A. Bratchenko

Samara National Research University

Email: shamina94@inbox.ru

Cand. Sci. (Phys.-Mat.)

Russian Federation, Samara

Vladimir I. Kukushkin

Osipyan Institute of Solid State Physics RAS (ISSP RAS)

Email: kukushvi@mail.ru
ORCID iD: 0000-0001-6731-9508

Cand. Sci. (Phys.-Mat.)

Russian Federation, Chernogolovka

Tat’yana A. Fedorova

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov

Email: t_fyodorova@oparina4.ru
ORCID iD: 0000-0001-6714-6344

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Oksana A. Bystrykh

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov

Email: ksana.77@inbox.ru

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Anton A. Ishchenko

National Medical Research Center «Treatment and Rehabilitation Center»

Email: ra2001_2001@mail.ru
ORCID iD: 0000-0001-6673-3934

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Aida V. Gilyadova

I.M. Sechenov First Moscow State Medicine University (Sechenov University); National Medical Research Center «Treatment and Rehabilitation Center»

Email: aida-benyagueva@mail.ru
ORCID iD: 0000-0003-4343-4813

Assistant Lecturer

Russian Federation, Moscow; Moscow

References

  1. Sulima AN, Kolesnikova IO, Davydova AA, Kriventsov MA. Hysteroscopic and morphological assessment of intrauterine pathology in different age periods. Journal of Obstetrics and Women’s Diseases. 2020;69(2):51–58. (In Russ). doi: 10.17816/JOWD69251-58
  2. Davis VJ, Dizon CD, Minuk CF. Rare cause of vaginal bleeding in early puberty. J Pediatr Adolesc Gynecol. 2005;18(2):113–115. doi: 10.1016/j.jpag.2005.01.006
  3. Lee SC, Kaunitz AM, Sanchez-Ramos L, Rhatigan RM. The oncogenic potential of endometrial polyps: a systematic review and meta-analysis. Obstet Gynecol. 2010;116(5):1197–1205. doi: 10.1097/AOG.0b013e3181f74864
  4. Savel’eva GM, Sukhikh GT, Serov VN, Radzinskii VE, Manukhin IB, editors. Gynecology: National guidelines. 2nd ed., reprint. and add. Moscow: GEOTAR-Media; 2020. P. 303–308. (In Russ).
  5. Lacey JV Jr, Chia VM, Rush BB, et al. Incidence rates of endometrial hyperplasia, endometrial cancer and hysterectomy from 1980 to 2003 within a large prepaid health plan. Int J Cancer. 2012;131(8):1921–1929. doi: 10.1002/ijc.27457
  6. Reed SD, Newton KM, Clinton WL, et al. Incidence of endometrial hyperplasia. Am J Obstet Gynecol. 2009;200(6):678.e1–e6. doi: 10.1016/j.ajog.2009.02.032
  7. Kaprin AD, Starinskii VV, Shakhzadova AO, editors. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Moscow: P.A. Herzen Moscow State Medical Research Institute ― branch of the Federal State Budgetary Institution “National Medical Research Center of Radiology” of the Ministry of Health of Russia; 2021. (In Russ).
  8. Cote ML, Alhajj T, Ruterbusch JJ, et al. Risk factors for endometrial cancer in black and white women: a pooled analysis from the Epidemiology of Endometrial Cancer Consortium (E2C2). Cancer Causes Control. 2015;26(2):287–296. doi: 10.1007/s10552-014-0510-3
  9. Kazachkova ЕА, Zatvomickaya АV, Voropaeva ЕЕ, Kazachkov EL, Rogozina АА. Clinic-anamnestic features and structure of endometrium of women with the uterus mucosa hyperplasia during various age periods. Ural Medical Journal. 2017;(6):18–22. (In Russ).
  10. Polyakova EN, Lutsenko NS, Gaidai NV. Diagnosis of endometrial hyperplasia in routine gynecological practice. Zaporozhye Medical Journal. 2019;21(1):95–99. (In Russ).
  11. Chen K-H, Pan MJ, Jargalsaikhan Z, Ishdorj TO, Tseng FG. Development of Surface-Enhanced Raman Scattering (SERS)-Based Surface-Corrugated Nanopillars for Biomolecular Detection of Colorectal Cancer. Biosensors (Basel). 2020;10(11):163. doi: 10.3390/bios10110163
  12. Cepeda-Pérez E, López-Luke T, Salas P, et al. SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis. Biomed Opt Express. 2016;7(6):2407–2418. doi: 10.1364/BOE.7.002407
  13. Paraskevaidi M, Ashton KM, Stringfellow HF, et al. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma. Talanta. 2018;189:281–288. doi: 10.1016/j.talanta.2018.06.084
  14. Li S, Li L, Zeng Q, et al. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms. Sci Rep. 2015;5:9582. doi: 10.1038/srep09582
  15. Artemyev DN, Kukushkin VI, Avraamova ST, Aleksandrov NS, Kirillov YuA. Using the Method of «Optical Biopsy» of Prostatic Tissue to Diagnose Prostate Cancer. Molecules. 2021;26(7):1961. doi: 10.3390/molecules26071961
  16. Depciuch J, Barnaś E, Skręt-Magierło J, et al. Spectroscopic evaluation of carcinogenesis in endometrial cancer. Sci Rep. 2021;11(1):9079. doi: 10.1038/s41598-021-88640-7
  17. Savitzky A, Golay M. Smoothing and Differentiation of Data by Simplified Least-Squares Procedures. Analytical Chemistry. 1964;36:1627–1639. doi: 10.1021/ac60214a047
  18. Baek S-J, Park A, Ahn Y-J, Choo J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. The Analyst. 2015;140:250–257. doi: 10.1039/C4AN01061B
  19. Tahira M, Nawaz H, Majeed MI, et al. Surface-enhanced Raman spectroscopy analysis of serum samples of typhoid patients of different stages. Photodiagnosis Photodyn Ther. 2021;34:102329. doi: 10.1016/j.pdpdt.2021.102329
  20. Feng Sh, Wang W, Tai IT, et al. Label-free surface-enhanced Raman spectroscopy for detection of colorectal cancer and precursor lesions using blood plasma. Biomed Opt Express. 2015;6(9):3494–3502. doi: 10.1364/BOE.6.003494
  21. Bratchenko LA, Al-Sammarraie SZ, Tupikova EN, et al. Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning. Biomed Opt Express. 2022;13(9):4926–4938. doi: 10.1364/BOE.455549
  22. Rubina S, Krishna CM. Raman spectroscopy in cervical cancers: an update. J Cancer Res Ther. 2015;11(1):10–17. doi: 10.4103/0973-1482.154065
  23. Parlatan U, Inanc MT, Ozgor BYu, et al. Raman spectroscopy as a non-invasive diagnostic technique for endometriosis. Sci Rep. 2019;9(1):19795. doi: 10.1038/s41598-019-56308-y
  24. Barnas E, Skret-Magierlo J, Skret A, et al. Simultaneous FTIR and Raman Spectroscopy in Endometrial Atypical Hyperplasia and Cancer. Int J Mol Sci. 2020;21(14):4828. doi: 10.3390/ijms21144828
  25. Shangyuan F, Rong Ch, Juqiang L, et al. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron. 2011;26(7):3167–3174. doi: 10.1016/j.bios.2010.12.020
  26. Shangyuan F, Rong Ch, Juqiang L, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25(11):2414–2419. doi: 10.1016/j.bios.2010.03.033
  27. Qian H, Wang Y, Ma Z, et al. Surface-Enhanced Raman Spectroscopy of Pretreated Plasma Samples Predicts Disease Recurrence in Muscle-Invasive Bladder Cancer Patients Undergoing Neoadjuvant Chemotherapy and Radical Cystectomy. Int J Nanomedicine. 2022;17:1635–1646. doi: 10.2147/IJN.S354590
  28. Bonifacio A, Dalla SM, Spizzob R, et al. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem. 2014;406(9–10):2355–2365. doi: 10.1007/s00216-014-7622-1
  29. Movasaghi Z, Rehman S, Rehman I. Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews. 2007;42(5):493–541. doi: 10.1080/05704920701551530
  30. Gelder JD, Gussem KD, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38(9):1133–1147. doi: 10.1002/jrs.1734
  31. Hernández B, Pflüger F, Kruglik SG, Ghomi M. Characteristic raman lines of phenylalanine analyzed by a multiconformational approach. J Raman Spectrosc. 2013;44(6):827–833. doi: 10.1002/jrs.4290
  32. Song H, Peng JS, Dong-Sheng Y, et al. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz J Med Biol Res. 2012;45(1):78–85. doi: 10.1590/S0100-879X2011007500158
  33. Paraskevaidi M, Morais CLM, Ashton KM, et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers (Basel). 2020;12(5):1256. doi: 10.3390/cancers12051256

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Averaged processed spectra of surface-enhanced Raman scattering of blood plasma from samples of patients with endometrial hyperplasia and polyp, as well as endometrial adenocarcinoma in comparison with the control group.

Download (183KB)
3. Fig. 2. Distribution of the importance of variables of surface-enhanced Raman plasma spectra in the classification of samples by pathologic-associated trait in the implementation of methods for analyzing experimental data based on PLS-DA: a ― classes: control, polyp + hyperplasia, adenocarcinoma; b ― classes: hyperplasia, adenocarcinoma.

Download (383KB)
4. Fig. 3. The accuracy of differentiation of endometrial adenocarcinoma relative to the control group and the group of endometrial hyperplasia + endometrial polyp.

Download (111KB)
5. Fig. 4. The accuracy of differentiation of endometrial adenocarcinoma relative to the group of endometrial hyperplasia + endometrial polyp (without the control group).

Download (112KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».