现代产科中的分娩镇痛:可能的前景
- 作者: Kiryanova A.O.1, Murashko A.V.1
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University
- 期: 卷 11, 编号 3 (2024)
- 页面: 233-244
- 栏目: Reviews
- URL: https://journal-vniispk.ru/2313-8726/article/view/268225
- DOI: https://doi.org/10.17816/aog626529
- ID: 268225
如何引用文章
详细
早产问题之所以紧迫,是因为其发病率和新生儿死亡率都很高。早产对胎儿的影响往往是致命的:占新生儿死亡率的70%,占婴儿死亡率的36%。68%的存活早产儿存在严重的神经系统缺陷(脑瘫、癫痫、脑室出血、视网膜病变、失明、听力损失、神经精神和运动发育迟缓)。此外,早产儿患化脓性败血症的风险也很高。早产的代谢影响是代谢综合征和高血压等疾病发展的先决条件。在这方面,溶血疗法是产科中非常重要和相关的治疗措施。然而,大多数已知和积极使用的促溶血药物在延长妊娠期方面效果不佳,或伴有严重的副作用。为了获得最安全、最有效和最持久的疗效,人们正在积极寻找新的促溶血药物。这篇综述文章探讨了最有希望进入常规产科实践的相关药物。为此,我们分析了开放数据库PubMed, Embase, Web of Science, Google Scholar和RSCI中的科学论文、荟萃分析和系统综述。为了进行分析,主要选择了不超过五年前在数据库中发布的英文出版物,但出版时间较长的基础著作除外。
作者简介
Anastasia O. Kiryanova
I.M. Sechenov First Moscow State Medical University
Email: Anastasia.kiryanova2002@gmail.com
ORCID iD: 0009-0001-5459-3054
SPIN 代码: 2275-4803
4th year student
俄罗斯联邦, MoscowAndrey V. Murashko
I.M. Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: murashko_a_v@staff.sechenov.ru
ORCID iD: 0000-0003-0663-2909
SPIN 代码: 2841-9638
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 2018;45(3):565–577. doi: 10.1016/j.clp.2018.05.007
- Khodjaeva ZS, Shmakov RG, Adamyan LV, et al. Clinical recommendations: Premature birth. Moscow; 2020. (In Russ.)
- Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol. 2020;42(4):413–429. doi: 10.1007/s00281-020-00807-y
- Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F464–F466. doi: 10.1136/fn.88.6.f464
- Wilson A, Hodgetts-Morton VA, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022;8(8):CD014978. doi: 10.1002/14651858.CD014978.pub2
- Prasath A, Aronoff N, Chandrasekharan P, Diggikar S. Antenatal MAGNESIUM Sulfate and adverse gastrointestinal outcomes in preterm infants-a systematic review and meta-analysis. J Perinatol. 2023;43(9):1087–1100. doi: 10.1038/s41372-023-01710-8
- Kosyakova OV, Bespalova ON. Prevention and therapy of threatened preterm birth in multiple pregnancy. Journal of Obstetrics and Womans Diseases. 2019;68(4):55–70. EDN: TLCJUV doi: 10.17816/JOWD68455-70
- Norman JE. Progesterone and preterm birth. Int J Gynaecol Obstet. 2020;150(1):24–30. doi: 10.1002/ijgo.13187
- Kirchhoff E, Schnei Thiele K, Hierweger AM, Riquelme JIA, et al. Impaired progesterone-responsiveness of CD11c+ dendritic cells affects the generation of CD4+ regulatory T cells and is associated with intrauterine growth restriction in mice. Front Endocrinol (Lausanne). 2019;10:96. doi: 10.3389/fendo.2019.00096
- der V, Pichler G, et al. Hexoprenaline Compared with Atosiban as Tocolytic Treatment for Preterm Labor. Geburtshilfe Frauenheilkd. 2022;82(8):852–858. doi: 10.1055/a-1823-0176
- Helmer H, Saleh L, Petricevic L, et al. Barusiban, a selective oxytocin receptor antagonist: placental transfer in rabbit, monkey, and human. Biol Reprod. 2020;103(1):135–143. doi: 10.1093/biolre/ioaa048
- Saade GR, Shennan A, Beach KJ, et al. Randomized trials of retosiban versus placebo or atosiban in spontaneous preterm labor. Am J Perinatol. 2021;38(S01):e309–e317. doi: 10.1055/s-0040-1710034
- Powell M, Saade G, Thornton S, et al. Safety and outcomes in infants born to mothers participating in retosiban treatment trials: ARIOS follow-up study. Am J Perinatol. 2023;40(10):1135–1148. doi: 10.1055/s-0041-1733784
- Deng W, Yuan J, Cha J, et al. Endothelial cells in the decidual bed are potential therapeutic targets for preterm birth prevention. Cell Rep. 2019;27(6):1755–1768.e4. doi: 10.1016/j.celrep.2019.04.049
- Manning M, Misicka A, Olma A, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24(4):609–628. doi: 10.1111/j.1365-2826.2012.02303.x
- Boccia ML, Gorsaud AP, Bachevalier J, et al. Peripherally administered non-peptide oxytocin antagonist, L368,899, accumulates in limbic brain areas: a new pharmacological tool for the study of social motivation in non-human primates. Hormones and Behavior. 2007;52(3):344–351. doi: 10.1016/j.yhbeh.2007.05.009
- Pohl O, Méen M, Lluel P, et al. Effect of OBE022, an oral and selective non-prostanoid PGF2α receptor antagonist in combination with nifedipine for preterm labor: a study on RU486-induced pregnant mice. Reprod Sci. 2017;24:(40A):S-002.
- Pohl O, Chollet A, Kim SH, et al. OBE022, an oral and selective prostaglandin F2α receptor antagonist as an effective and safe modality for the treatment of preterm labour. J Pharmacol Exp Ther. 2018;366(2):349–364. doi: 10.1124/jpet.118.247668
- Fernandez-Martinez E, Ponce-Monter H, Soria-Jasso LE, et al. Inhibition of uterine contractility by thalidomide analogs via phosphodiesterase-4 inhibition and calcium entry blockade. Molecules. 2016;21(10):1332. doi: 10.3390/molecules21101332
- Tyson EK, Smith R, Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy. Endocrinology. 2009;150(12):5617–5625. doi: 10.1210/en.2009-0348
- Coutinho EM, Vieira Lopes AC. Inhibition of uterine motility by aminophylline. Am J Obstet Gynecol. 1971;110(5):726–729. doi: 10.1016/0002-9378(71)90261-4
- Laifer SA, Ghodgaonkar RB, Zacur HA, Dubin NH. The effect of aminophylline on uterine smooth muscle contractility and prostaglandin production in the pregnant rat uterus in vitro. Am J Obstet Gynecol. 1986;155(1):212–215. doi: 10.1016/0002-9378(86)90113-4
- Buckle JW, Nathanielsz PW. Modification of myometrial activity in vivo by administration of cyclic nucleotides and theophylline to the pregnant rat. J Endocrinol. 1975;66(3):339–347. doi: 10.1677/joe.0.0660339
- Sanborn BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig. 2000;7(1):4–11. doi: 10.1016/s1071-5576(99)00051-9
- Birnbaumer L, Zhu X, Jiang M, et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA. 1996;93(26):15195–15202. doi: 10.1073/pnas.93.26.15195
- Liedtke W, Kim C. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci. 2005;62(24):2985–3001. doi: 10.1007/s00018-005-5181-5
- Nilius B, Vriens J, Prenen J, et al. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol. 2004;286(2):C195–205. doi: 10.1152/ajpcell.00365.2003
- Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 2005;118 (Pt 11):2435–2440. doi: 10.1242/jcs.02372
- Benfenati V, Caprini M, Dovizio M, et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA. 2011;108(6):2563–2568. doi: 10.1073/pnas.1012867108
- Maruyama T, Kanaji T, Nakade S, et al. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997;122(3):498–505. doi: 10.1093/oxfordjournals.jbchem.a021780
- Bilmen JG, Wootton LL, Godfrey RE, et al. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem. 2002;269(15):3678–3687. doi: 10.1046/j.1432-1033.2002.03060.x
- Ma HT, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem. 2002;277(9):6915–6922. doi: 10.1074/jbc.M107755200
- Missiaen L, Callewaert G, De Smedt H, Parys JB. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001;29(2):111–116. doi: 10.1054/ceca.2000.0163
- Ngadjui E, Kouam JY, Fozin GRB, et al. Uterotonic effects of aqueous and methanolic extracts of Lannea acida in Wistar rats: an in vitro study. Reprod Sci. 2021;28(9):2448–2457. doi: 10.1007/s43032-021-00465-x
- McGuire W, Fowlie PW. Naloxone for narcotic exposed newborn infants: systematic review. Arch Dis Child Fetal Neonatal Ed. 2003;88(4):F308–F311. doi: 10.1136/fn.88.4.f308
- Debelak K, Morrone WR, O'Grady KE, Jones HE. Buprenorphine + naloxone in the treatment of opioid dependence during pregnancy-initial patient care and outcome data. Am J Addict. 2013;22(3):252–254. doi: 10.1111/j.1521-0391.2012.12005.x
- Kemp MW, Saito M, Newnham JP, et al. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci. 2010;17(7):619–628. doi: 10.1177/1933719110373148
- Morgan SJ, Deshpande DA, Tiegs BC, et al. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem. 2014;289(33):23065–23074. doi: 10.1074/jbc.M114.557652
- Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26(1):112–120. doi: 10.1016/j.pupt.2012.05.007
- Xu Q, Jennings NL, Sim K, et al. Pathological hypertrophy reverses β2-adrenergic receptor-induced angiogenesis in mouse heart. Physiol Rep. 2015;3(3):e12340. doi: 10.14814/phy2.12340
- Pohl O, Marchand L, Gotteland JP, et al. Pharmacokinetics, safety and tolerability of OBE022, a selective prostaglandin F2α receptor antagonist tocolytic: a first-in-human trial in healthy post-menopausal women. Br J Clin Pharmacol. 2018;84(8):1839–1855. doi: 10.1111/bcp.13622
补充文件
