Forecasting Consumer Activity using Machine Learning Methods

Cover Page

Cite item

Full Text

Abstract

This article discusses forecasting consumer activity, and in particular forecasting household energy consumption using machine learning. Forecasting household energy consumption using machine learning is a topic that addresses various aspects of efficient and environmentally friendly use of electricity. The article discusses various machine learning methods and models that can be applied to solve the forecasting problem. The consideration of a neural network model such as LTSM is highlighted in a separate category, its description, the learning and use process are given, as well as the advantages and disadvantages of this model are given. After that, a model is trained on the prepared dataset to predict energy consumption.

About the authors

Vadim D. Novikov

Kazan State Power Engineering University

Author for correspondence.
Email: novikovschool@gmail.com
ORCID iD: 0009-0006-8034-8956

student of the Department of Information Technologies and Intelligent Systems

Russian Federation, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

Renat M. Khamitov

Kazan State Power Engineering University

Email: hamitov@gmail.com
ORCID iD: 0000-0002-9949-4404
SPIN-code: 7401-9166
Scopus Author ID: 57222149321

Associate Professor of the Department of Information Technologies and Intelligent Systems, Candidate of Technical Sciences

Russian Federation, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

References

  1. Vasiliev G.V., Berdonosov V.D. Methodology for the effective application of the hybrid neural network models for the energy consumption forecasting (in Russian). Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical systems and complexes], 2022, no. 4 (57), pp. 88-95.
  2. Morgoeva A.D., Morgoev I.D. Forecasting of the electric energy consumption by the industrial enterprise by means of the machine learning methods. Izvestiya TPU, 2022, no. 7, pp. 115-125.
  3. Gorbunova E.B. Neural network approach to forecasting energy resources consumption in urban environment. Inzhenerny vestnik Dona, 2018, no. 4 (51). http://ivdon.ru/ru/magazine/archive/n4y2018/5303
  4. Poluyanovich, N.K.; Dubyago, M.N. Estimation of the influencing factors and forecasting of the power consumption in the regional power system taking into account the mode of its operation. Izvestiya YuFU. Tekhnicheskie nauki, 2022, no. 2 (226), pp. 31-46.
  5. Lyandau Yu.V., Temirbulatov A.U. Review of the application of artificial intelligence technologies in the electric power industry. Innovatsii i investitsii [Innovations and Investments], 2023, no. 8, pp. 304-309.
  6. Nurfaizi A., Hasanuddin M. Ticket Prediction using LSTM on a GLPI System. International Journal of Open Information Technologies, 2023, no. 7. http://injoit.org/index.php/j1/article/view/1567

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Novikov V.D., Khamitov R.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).