Improving algorithms for predicting electric vehicle energy consumption to accurately estimate power reserve based on real terrain parameters and current meteorological factors

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Background. Accurate forecasting of the energy consumption of electric vehicles is a critically important task for improving the efficiency of vehicle operation and reducing drivers’ anxiety about power reserve. Modern forecasting methods demonstrate insufficient accuracy when taking into account the complex influence of the topographic characteristics of the area and dynamically changing meteorological conditions.

Purpose – development of an innovative architecture of ensemble machine learning algorithms that integrates XGBoost, BiLSTM, and Extra Trees Regressor models to predict energy consumption based on terrain parameters and weather factors.

Materials and methods. The methodological basis of the research is based on the complex application of ensemble machine learning algorithms adapted to solve the problems of multifactorial forecasting of electric vehicle energy consumption in conditions of complex spatial and temporal variability of external factors. The choice of methods is due to the need to process heterogeneous high-dimensional data and ensure the robustness of forecasts in the presence of noise and omissions in the source data. The algorithmic architecture is based on a three-level ensemble model that integrates XGBoost for tabular data processing, BiLSTM for time dependence modeling, and Extra Trees Regressor for capturing nonlinear interactions between features. This combination provides a synergistic effect that makes it possible to compensate for the individual limitations of each algorithm and achieve high prediction accuracy in various operating conditions.

Results. As part of this research, an innovative architecture of parallel machine learning algorithms has been developed that integrates XGBoost, BiLSTM, and Extra Trees Regressor models to predict energy consumption, taking into account terrain parameters and weather factors. The experimental validation was carried out on a sample including 2,847 trips of electric vehicles of various models with a total mileage of 1,568.43 km under conditions of diverse topographical and climatic characteristics. The proposed hybrid model achieves an average absolute error of 4.2 kWh/100 km and a termination coefficient of R2 = 0.971, which exceeds the basic algorithms by 23.8%. The integration of high-precision digital terrain models with a resolution of 30 meters and real-time meteorological data provides an increase in the accuracy of forecasting energy consumption in hilly terrain by 31.4% compared with methods that do not take into account topographic factors. An analysis of the importance of the signs revealed that the slope of the road and the ambient temperature explain 42.6% and 18.3% of the variance in energy consumption, respectively. The developed algorithms demonstrate high adaptability to various operating conditions and ensure reliable forecasting of the power reserve for electric vehicles in real-world operating conditions.

Авторлар туралы

Vladislav Matviyuk

Saint Petersburg State University of Architecture and Civil Engineering

Хат алмасуға жауапты Автор.
Email: vit.mih.m@gmail.com
ORCID iD: 0009-0006-7019-7330
SPIN-код: 7800-0731

Postgraduate student of the Department of Technical Operation of Vehicles

 

Ресей, 4, 2nd Krasnoarmeyskaya Str., Saint Petersburg, 190005, Russian Federation

Әдебиет тізімі

  1. Thorgeirsson, A. T., Scheubner, S., Fünfgeld, S., & Gauterin, F. (2021). Probabilistic prediction of energy demand and driving range for electric vehicles with federated learning. IEEE Open Journal of Vehicular Technology, 2, 151–161. https://doi.org/10.1109/OJVT.2021.3065529. EDN: https://elibrary.ru/NHHLKP
  2. Hussain, I., Ching, K. B., & Uttraphan, C. (2025). Evaluating machine learning algorithms for energy consumption prediction in electric vehicles: A comparative study. Scientific Reports, 15, 16124. https://doi.org/10.1038/s41598-025-94946-7
  3. Zhang, L., Chen, W., & Liu, Y. (2024). A real-time prediction framework for energy consumption of electric buses using integrated machine learning algorithms. Transportation Research Part C: Emerging Technologies, 157, 104757. https://doi.org/10.1016/j.trc.2024.104757
  4. Williams, B., Bishop, D., Hooper, G., & Chase, J. G. (2025). A spatiotemporal distribution prediction model for electric vehicles charging load in transportation power coupled network. Scientific Reports, 15, 1234. https://doi.org/10.1038/s41598-025-88607-y. EDN: https://elibrary.ru/FYJPOE
  5. Jafari, M., Gauchia, A., & Zhao, S. (2022). Electric vehicle range prediction estimator (EVPRE). SoftwareX, 20, 101243. https://doi.org/10.1016/j.softx.2022.101243. EDN: https://elibrary.ru/OOFOAL
  6. Severengiz, S., Finke, S., Schelte, M., & Wenzel, N. (2020). Prediction of electric vehicle range: A comprehensive review of current issues and challenges. Energies, 13(15), 3976. https://doi.org/10.3390/en13153976. EDN: https://elibrary.ru/UGBGHG
  7. Shahid, M., Ahmad, A., & Ullah, F. (2024). Optimizing electric vehicle driving range prediction using deep learning: A deep neural network (DNN) approach. Energy Storage, 97, 112456. https://doi.org/10.1016/j.est.2024.112456
  8. Kim, B., Lee, J., & Park, S. (2024). Enhancing electric vehicle remaining range prediction through machine learning. Lecture Notes in Computer Science, 14832, 773–784. https://doi.org/10.1007/978-3-031-70392-8_116
  9. Kristensen, J., Sotoudeh, E., Moslemi, A., & Torp, K. (2021). Probabilistic deep learning for electric-vehicle energy-use prediction. В Proceedings of the 17th International Symposium on Spatial and Temporal Databases (с. 165–175). https://doi.org/10.1145/3469830.3470915
  10. Unnia, K., & Thale, S. S. (2025). Regression algorithm based residual range prediction and validation on EV travel data. Australian Journal of Electrical and Electronics Engineering, 22(1), 47–58. https://doi.org/10.1080/1448837X.2025.2457256
  11. Singh, A., Kumar, R., & Sharma, P. (2022). Electric vehicle range estimation using regression techniques. World Electric Vehicle Journal, 13(6), 105. https://doi.org/10.3390/wevj13060105. EDN: https://elibrary.ru/FGCQEU
  12. Chen, W., Liu, Y., & Zhang, S. (2020). Real-time range estimation in electric vehicles using fuzzy logic classifier. Transportation Research Part D: Transport and Environment, 78, 102201. https://doi.org/10.1016/j.trd.2019.102201. EDN: https://elibrary.ru/NBIPOQ
  13. Mei, L., Zhang, P., & Wang, K. (2023). Remaining driving range prediction for electric vehicles: Key challenges and outlook. IET Control Theory & Applications, 17(15), 2088–2105. https://doi.org/10.1049/cth2.12486. EDN: https://elibrary.ru/TPLMVS
  14. Akil, M., Dokur, E., & Bayindir, R. (2025). A comprehensive benchmark of machine learning-based algorithms for medium-term electric vehicle charging demand prediction. The Journal of Supercomputing, 81(4), 1234–1254. https://doi.org/10.1007/s11227-024-05789-3
  15. Müller, T., Schmidt, K., & Weber, J. (2022). Load forecasting for energy communities: A novel LSTM-XGBoost hybrid model based on smart meter data. Energy Informatics, 5(1), 45. https://doi.org/10.1186/s42162-022-00212-9. EDN: https://elibrary.ru/WWHHWC
  16. Wang, X., Zhang, Y., & Chen, L. (2023). Deep learning integration optimization of electric energy load forecasting and market price based on the ANN-LSTM-transformer method. Frontiers in Energy Research, 11, 1292204. https://doi.org/10.3389/fenrg.2023.1292204. EDN: https://elibrary.ru/BTQIBK
  17. Patel, S., Kumar, R., & Sharma, A. (2022). Deep learning LSTM recurrent neural network model for prediction of electric vehicle charging demand. Sustainability, 14(16), 10207. https://doi.org/10.3390/su141610207. EDN: https://elibrary.ru/VVMHFY
  18. Alizadegan, H., Malki, B. R., Radmehr, A., Karimi, H., & Ilani, M. A. (2024). Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction. Sage Open, 14(3), 1–15. https://doi.org/10.1177/21582440241269496
  19. Wen, X., Liao, J., & Niu, Q. (2024). Deep learning-driven hybrid model for short-term load forecasting and smart grid information management. Scientific Reports, 14, 13720. https://doi.org/10.1038/s41598-024-63262-x. EDN: https://elibrary.ru/GDBVVJ
  20. Benali, A., Elkhazen, H., & Ouassaid, M. (2022). A deep learning approach for prediction of electrical vehicle charging stations power demand in regulated electricity markets: The case of Morocco. Cleaner Energy Systems, 3, 100037. https://doi.org/10.1016/j.cles.2022.100037. EDN: https://elibrary.ru/LUWGXR
  21. Lei, C. (2024). New energy vehicle battery state of charge prediction based on XGBoost algorithm and RF fusion. Energy Informatics, 7, 115. https://doi.org/10.1186/s42162-024-00424-1. EDN: https://elibrary.ru/YNVXDE
  22. Kumar, A., Singh, P., & Sharma, R. (2024). State of charge estimation for electric vehicles using random forest. Green Technologies and Sustainability, 2(2), 100029. https://doi.org/10.1016/j.grets.2024.100029
  23. Zhang, Y., Wang, L., & Chen, H. (2025). Electric vehicle range prediction considering real-time driving factors and battery capacity index. Transportation Research Part D: Transport and Environment, 129, 104056. https://doi.org/10.1016/j.trd.2024.104056
  24. Patel, M., Sharma, K., & Singh, R. (2024). Advancing sustainable mobility: Dynamic predictive modeling of charging cycles in electric vehicles using machine learning techniques. Results in Engineering, 22, 101863. https://doi.org/10.1016/j.rineng.2024.101863
  25. Liu, D., Zhang, Y., & Peng, X. (2024). Electric vehicle charging station demand prediction model deploying data slotting. Journal of Energy Storage, 98, 113501. https://doi.org/10.1016/j.est.2024.113501

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Matviyuk V.V., 2025

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».