Проблемы поверхностной дефектоскопии металлов с использованием машинного обучения и пути их решения

Обложка

Цитировать

Полный текст

Аннотация

Отбраковка металлопродукции является важным этапом производственного процесса, направленным на обеспечение лучшего качества конечного продукта. Традиционные методы отбраковки, основанные на визуальном контроле или использовании простых автоматизированных систем, имеют свои ограничения и недостатки, такие как низкая скорость и точность классификации дефектов. В работе рассматривается возможность применения различных методов машинного обучения для классификации дефектов в металлических изделиях. Проводится сравнительный анализ данных алгоритмов, а также их эффективности с целью определения наиболее подходящего подхода к автоматической отбраковке металлопродукции.

Об авторах

Кирилл Михайлович Рыбаков

ФГБОУ ВО «Казанский государственный энергетический университет»

Автор, ответственный за переписку.
Email: kotya.ribak@mail.ru
ORCID iD: 0009-0005-3781-5259

студент 2-го курса магистратуры кафедры «Информационные технологии и интеллектуальные системы»

Россия, ул. Красносельская, 51, г. Казань, 420066, Российская Федерация

Ренат Минзашарифович Хамитов

ФГБОУ ВО «Казанский государственный энергетический университет»

Email: hamitov@gmail.com
ORCID iD: 0000-0002-9949-4404

доцент кафедры «Информационные технологии и интеллектуальные системы», кандидат технических наук, доцент

Россия, ул. Красносельская, 51, г. Казань, 420066, Российская Федерация

Список литературы

  1. Алексеев И.П. Перспективы применения капсульных нейронных сетей в распознавании объектов на изображениях / И. П. Алексеев, Т. В. Лаптева // КИП и автоматика: обслуживание и ремонт. 2022. № 1. С. 50-53.
  2. Шорина Т.В. Распознавание визуальных образов средствами языка программирования Python / Т. В. Шорина, Р. М. Хамитов // Научно-технический вестник Поволжья. 2023. № 12. С. 639-641.
  3. Салтанаева Е.А. Построение систем распознавания образов на основе искусственного интеллекта / Е. А. Салтанаева, С. М. Куценко // Научно-технический вестник Поволжья. 2023. № 12. С. 376-378.
  4. Фахрутдинов Р.Р., Хамитов Р.М. Исследование методов распознавания дефектов на изображении для объектов топливно-энергетического комплекса // Сборник научных статей VIII международной научной конференции. Казань, 2021. С. 126-129.
  5. Krzysztof Lalik, Mateusz Kozek, Paweł Gut, Marek Iwaniec, Grzegorz Pawłowski. June 22, 2022 SVM Algorithm for Industrial Defect Detection and Classification. URL: https://www.matec-conferences.org/articles/matecconf/abs/2022/04/matecconf_mms2020_04004/matecconf_mms2020_04004.html (дата обращения: 15.02.2023).
  6. Shuai Wang, Xiaojun Xia, Lanqing Ye, Binbin Yang. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional. February 26, 2021. URL: Neural Networks https://www.mdpi.com/2075-4701/11/3/388 (дата обращения: 18.02.2023).
  7. Suvdaa B., Ahn J., Ko J. Steel surface defects detection and classification using SIFT and voting strategy. April 2, 2012. URL:ttps://www.researchgate.net/publication/293134660_Steel_surface_defects_detection_and_classification_using_SIFT_and_voting_strategy (дата обращения: 14.02.2023).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Рыбаков К.М., Хамитов Р.М., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».