Оптимизация нейронных сетей: методы и их сравнение на примере интеллектуального анализа текста

Обложка

Цитировать

Полный текст

Аннотация

В результате исследования было разработано программное обеспечение, реализующее различные алгоритмы оптимизации нейронных сетей, позволившее провести их сравнительный анализ по качеству оптимизации. В статье подробно рассматриваются искусственные нейронные сети и методы их оптимизации: квантование, обрезка, дистилляция, разложение Такера. Описаны алгоритмы и инструменты оптимизации нейронных сетей, проведен сравнительный анализ различных методов, преимущества и недостатки, приведены расчетные значения и даны рекомендации по использованию каждого из методов. Оптимизация рассматривается на задаче классификации текстов, которые были предварительно подготовлены к обработке: извлечены признаки, выбраны и обучены модели, настроены параметры. Поставленная задача реализована при помощи технологий: языка программирования Python, фреймворка Pytorch, среды разработки Jupyter Notebook. Полученные результаты могут быть использованы в целях экономия вычислительных мощностей при сохранении качества распознавания и классификации.

Об авторах

Юлия Владимировна Торкунова

Казанский государственный энергетический университет; Сочинский государственный университет

Автор, ответственный за переписку.
Email: torkynova@mail.ru
ORCID iD: 0000-0001-7642-6663
SPIN-код: 7422-4238

профессор кафедры «Информационные технологии и интеллектуальные системы», доктор педагогических наук

 

Россия, ул. Красносельская, 51, г. Казань, Республика Татарстан, 420066, Российская Федерация; ул. Пластунская, 94, г. Сочи, Краснодарский край, 354000, Российская Федерация

Данила Владиславович Милованов

Казанский государственный энергетический университет

Email: studydmk@gmail.com

магистр

 

Россия, ул. Красносельская, 51, г. Казань, Республика Татарстан, 420066, Российская Федерация

Список литературы

  1. Аветисян Т. В., Львович Я. Е., Преображенский А. П. Разработка подсистемы распознания сигналов сложной формы // International Journal of Advanced Studies. 2023. Т. 13, № 1. С. 102-114. https://doi.org/10.12731/2227-930X-2023-13-1-102-114
  2. Акжолов Р.К., Верига А.В. Предобработка текста для решения задач NLP // Вестник науки. 2020. № 3 (24). C. 66-68.
  3. Ахметзянова К.Р., Тур. А.И., Кокоулин А.Н. Оптимизация вычислений нейронной сети // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. 2020. № 36. С. 117-130. https://doi.org/10.15593/2224-9397/2020.4.07
  4. Каширина И. Л., Демченко М. В. Исследование и сравнительный анализ методов оптимизации, используемых при обучении нейронных сетей // Вестник ВГУ, серия: Системный анализ и информационные технологии, 2018, № 4. С.123-132.
  5. Копырин А. С., Макарова И. Л. Алгоритм препроцессинга и унификации временных рядов на основе машинного обучения для структурирования данных // Программные системы и вычислительные методы. 2020. № 3. С. 40-50. https://doi.org/10.7256/2454-0714.2020.3.33958
  6. Осовский С. Нейронные сети для обработки информации. М.: Горячая линия. Телеком. 2019. 448 с.
  7. Романов Д.Е. Нейронные сети обратного распространения ошибки // Инженерный вестник Дона. 2009. № 3 . С. 19-24.
  8. Созыкин А.В. Обзор методов обучения глубоких нейронных сетей // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2017. № 3 (6). С. 28-59.
  9. Торкунова Ю.В., Коростелева Д.М., Кривоногова А.Е. Формирование цифровых навыков в электронной информационно-образовательной среде с использованием нейросетевых технологий // Современное педагогическое образование. 2020. №5. С. 107-110.
  10. Черкасова И.С. Оптимизация гиперпараметров нейронной сети и снижение вычислительных затрат // E-Scio. 2022. https://e-scio.ru/wp-content/uploads/2022/03/%D0%A7%D0%B5%D1%80%D0%BA%D0%B0%D1%81%D0%BE%D0%B2%D0%B0-%D0%98.-%D0%A1.pdf (дата обращения: 13.04.2023).
  11. Ященко А.В., Беликов А.В., Петерсон М.В. Дистилляция нейросетевых моделей для детектирования и описания ключевых точек изображений // Научно-технический вестник информационных технологий, механики и оптики. 2020. № 3. С. 402-409.
  12. A White Paper on Neural Network Quantization. https://doi.org/10.48550/arXiv.2106.08295
  13. Distilling Task-Specific Knowledge from BERT into Simple Neural Networks. https://doi.org/10.48550/arXiv.1903.12136
  14. Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar. Spectral Learning on Matrices and Tensors // Foundations and Trends R in Machine Learning, 2019. Vol. 12, No. 5-6. P. 393–536. https://doi.org/10.1561/2200000057
  15. Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition. https://arxiv.org/pdf/1609.09230.pdf (дата обращения: 20.05.2023)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Торкунова Ю.В., Милованов Д.В., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».