The impact of CAT tools on the quality and naturalness of translation in business communications
- Authors: Kolesnikova M.P.1
-
Affiliations:
- Issue: No 3 (2025)
- Pages: 210-220
- Section: Articles
- URL: https://journal-vniispk.ru/2409-8698/article/view/379087
- DOI: https://doi.org/10.25136/2409-8698.2025.3.73316
- EDN: https://elibrary.ru/UNIWKZ
- ID: 379087
Cite item
Full Text
Abstract
The article examines the impact of CAT tools (Computer-Assisted Translation) on the accuracy and naturalness of translation in business communications. The paper examines the theoretical foundations of their work, linguistic aspects, methods for assessing the quality of translation, as well as cognitive effects and development prospects. The main goal is to determine to what extent automated translation systems meet the criteria of accuracy and naturalness of the text in comparison with professional translation, to identify their capabilities and limitations. The key mechanisms of CAT tools, such as Translation Memory, integration with machine translation systems, terminology databases and automatic quality control, are considered. Special attention is paid to the impact of these technologies on the stylistic adaptation of the text, as well as on their applicability in various business areas. The advantages and limitations of automated translation in legal, technical and marketing texts are analyzed, as well as the prospects for the development of interactive systems capable of adapting to the context and style of the target audience. In the course of the work, methods of comparative analysis of translated texts, linguistic study of syntactic, semantic and pragmatic features, as well as case analysis of the effectiveness of CAT tools in the legal, technical and marketing fields were used. The results of the study show that CAT tools significantly improve the accuracy and consistency of translation in technical and legal texts, but have limited applicability in marketing materials due to insufficient adaptation to stylistic and cultural peculiarities. The main problems are related to text segmentation, expression calculus, and reduced expressivity of translation. The optimal solution is a hybrid approach combining automated translation with post-editing from professional translators. Further development of neural network technologies, artificial intelligence, and interactive systems can improve the naturalness and accuracy of translation, but specialist supervision remains necessary. The results of the study can be useful for improving strategies for using CAT tools, improving the efficiency of translators and improving translation quality standards.
References
- Бирюков Д. Системы компьютерной лингвистики и машинного перевода / Д. Бирюков. – М. : Диалог-МИФИ, 2017. – 145 с.
- Гирфанов Р. Р. Преимущества, недостатки и проблемы современных систем машинного перевода // Инновации. Наука. Образование. – 2021. – № 37. – С. 1221-1224. – URL: https://elibrary.ru/download/elibrary_46400023_46901376.pdf (дата обращения: 06.02.2025). – Режим доступа: для зарегистр. пользователей.
- Горбунов А. Машинный перевод как средство повышения качества переводческого процесса / А. Горбунов, Н. Лебедева // Вестник Томского государственного университета. Язык, литература и культура. – 2017. – № 4. – С. 110-116.
- Громов М. Л. Компьютерные аспекты машинного перевода / М. Л. Громов. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2019. – 133 с.
- Кардашев Н. Компьютерный анализ текстов на естественном языке / Н. Кардашев. – М.: Изд-во "МИФИ", 2016. – 218 с.
- Колпакова М. А. Сравнительно-сопоставительное исследование возможностей машинного перевода // Проблемы языка и перевода в трудах молодых ученых. – 2022. – № 21. – С. 82-86. – URL: https://elibrary.ru/download/elibrary_48761578_99499795.pdf (дата обращения: 06.02.2025). – Режим доступа: для зарегистр. пользователей.
- Масалимова Д. Р. Особенности машинного перевода (на примере веб-сервиса Google translate) // Тенденции развития науки и образования. – 2022. – № 91-6. – С. 47-50. – URL: https://elibrary.ru/download/elibrary_5025 (дата обращения: 06.02.2025). – Режим доступа: для зарегистр. пользователей.
- Findings of the 2017 Conference on Machine Translation (WMT17) / O. Bojar, R. Chatterjee, C. Federmann [и др.] // Proceedings of the Second Conference on Machine Translation. – Copenhagen, 2017. – P. 169-214.
Supplementary files

