О постановке краевых задач для двучленных функциональных уравнений

Обложка

Цитировать

Полный текст

Аннотация

В ряде предшествующих работ было обнаружено, что для двучленных функциональных уравнений вида \[\hspace{-1.5cm}
a(x)u(\alpha(x)) - \lambda u(x) = v(x),\quad x \in X,\]
где \(\alpha:X \to X\) есть обратимое отображение множества \(X\) в себя, возможна ситуация, типичная для дифференциальных уравнений "— уравнение разрешимо при любой правой части и при этом нет единственности решения. Как и в случае дифференциальных уравнений, возникает вопрос о постановке корректных краевых задач, т. е. о задании дополнительных условий, при которых решение существует и единственно. В работе обсуждается вопрос о том, какого вида дополнительные условия приводят к корректным краевым задачам для рассматриваемых уравнений.

Об авторах

А. Б. Антоневич

Белорусский государственный университет

Автор, ответственный за переписку.
Email: aiantonevich@mail.ru
Минск, Беларусь

Д. И. Кравцов

Белорусский государственный университет

Email: kravtsov.dmitriy1506@yandex.by
Минск, Беларусь

Список литературы

  1. Антоневич А.Б. Линейные функциональные уравнения: операторный подход.-Минск: Университетское, 1988.
  2. Антоневич А.Б. Когерентная локальная гиперболичность линейного расширения и существенные спектры оператора взвешенного сдвига на отрезке// Функц. анализ и его прилож. -2005.- 39, № 1.- C. 52-69.
  3. Антоневич А.Б. Правосторонняя обратимость двучленных функциональных операторов и градуированная дихотомия// Соврем. мат. Фундам. направл.-2021.-67, № 2. -С. 208-236.
  4. Антоневич А.Б., Ахматова А.А., Маковска Ю. Отображения с разделимой динамикой и спектральные свойства порожденных ими операторов// Мат. сб. -2015.- 206, № 3.-С. 3-34.
  5. Антоневич А.Б., Пантелеева Е.В. Корректные краевые задачи, правосторонняя гиперболичность и экспоненциальная дихотомия// Мат. заметки.- 2016.- 100, № 1.- С. 13-29.
  6. Архипенко О.А. Краевые задачи для разностных уравнений// Тр. БГТУ. Сер. 3. Физ.-мат. науки и инф. -2018.-№ 1. -С. 12-18.
  7. Карлович Ю.И., Мардиев Р. Об односторонней обратимости функциональных операторов с некарлемановским сдвигом в пространствах Гельдера// Изв. вузов. Сер. Мат.-1987.-3.- С. 77-80.
  8. Лопатинский Я.Б. Об одном способе приведения граничных задач для системы дифференциальных уравнений эллиптического типа к регулярным интегральным уравнениям// Укр. мат. ж. - 1953.- 5.- С. 123-151.
  9. Мардиев Р. Критерий полунетеровости одного класса сингулярных интегральных операторов с некарлемановским сдвигом// Докл. Акад. наук УзССР. - 1985.-2.- С. 5-7.
  10. Шукур Али А., Архипенко О.А. Резольвента краевой задачи для разностного уравнения// Пробл. физ., мат. и техн.- 2016.- 28, № 3.- С. 70-75.
  11. Antonevich A., Makowska Yu. On spectral properties of weighted shift operators generated by mappings with saddle points// Complex Anal. Oper. Theory.- 2008.- 2.-С. 215-240.
  12. Karlovich A.Yu., Karlovich Yu.I. One-sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces// Integral Equ. Oper. Theory.-2002.- 42.-С. 201-228.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).