Индекс Маслова на симплектических многообразиях и инфинитезимальные лагранжевы многообразия

Обложка

Цитировать

Полный текст

Аннотация

Настоящая работа является изложением доклада на конференции «Semiclassical analysis and nonlocal elliptic problems-2023». Определение индекса Маслова лагранжева многообразия в виде класса одномерных когомологий на нем породило многочисленные работы, обобщающие понятия индекса Маслова. В работах В.И. Арнольда, В.А. Васильева и их последователей была разработана теория лагранжевых бордизмов и на ее основании построены характеристические классы лагранжевых подмногообразий. Но имеется и другой подход описания классов Маслова лагранжевых подмногообразий, изложенный в работах В.В. Трофимова и А.Т. Фоменко с категорной точки зрения, который послужил источником настоящего доклада. Вдохновленные работами В.В. Трофимова и А.Т. Фоменко, мы вводим понятие т. н. инфинитезимальных лагранжевых многообразий, которые позволяют, по нашему мнению, с максимальной полнотой охарактеризовать характеристические классы лагранжевых многообразий и вычислять индекс Маслова практически для любых лагранжевых многообразий. Вопрос, который нас интересует, заключается в следующем: когда индекс Маслова, заданный на индивидуальном лагранжевом многообразии как одномерный класс когомологий, является образом некоторого одномерного класса когомологий тотального пространства расслоения лагранжевых грассманианов? Дается ответ для различных классов расслоений лагранжевых грассманианов.

Об авторах

А. С. Мищенко

Московский государственный университет им. М.В. Ломоносова; Московский Центр фундаментальной и прикладной математики

Автор, ответственный за переписку.
Email: asmish-prof@yandex.ru
Москва, Россия

Список литературы

  1. Арнольд В.И. Лагранжевы и лежандровы кобордизмы. I// Функц. анализ и его прилож.- 1980.- 14, № 3.- С. 1-13.
  2. Арнольд В.И. Лагранжевы и лежандровы кобордизмы. II// Функц. анализ и его прилож.- 1980.- 14, № 4.- С. 8-17.
  3. Васильев В.А. Характеристические классы лагранжевых и лежандровых многообразий, двойственные к особенностям каустик и волновых фронтов// Функц. анализ и его прилож. - 1981.-15, № 3.- С. 10-22.
  4. Карасёв М.В., Маслов В.П. Псевдодифференциальные операторы и канонический оператор в общих симплектических многообразиях// Изв. АН СССР. Сер. Мат.-1983.- 47, № 5.-С. 999-1029.
  5. Мищенко А.С. Индекс Маслова на симплектических многообразиях. С дополнением А.Т. Фоменко «Построение обобщенного класса Маслова для тотального пространства W = T∗(M) кокасательного расслоения»// Мат. заметки.-2022.- 112, № 5.- С. 718-732.
  6. Мищенко А.С. Заметки о категорном определении классов Маслова лагранжева многообразия// Мат. заметки.- 2023.- 114, № 3.- С. 474-476.
  7. Трофимов В.В. Группа голономии и обобщенные классы Маслова подмногообразий в пространствах аффинной связности// Мат. заметки.- 1991.- 49, № 2.-С. 113-123.
  8. Трофимов В.В. Обобщенные классы Маслова на пространстве путей симплектического многообразия// Тр. МИАН. -1994.- 205.- С. 172-199.
  9. Трофимов В.В., Фоменко А.Т. Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений.-М.: Факториал, 1995.
  10. Arnol’d V.I. Lagrange and Legendre cobordisms. I// Funct. Anal. Appl. - 1980.- 14, № 3.-С. 167-177.
  11. Arnol’d V.I. Lagrange and Legendre cobordisms. II// Funct. Anal. Appl. - 1980.- 14, № 4.- С. 252-260.
  12. Cannas da Silva A. Lectures on Symplectic Geometry.- Berlin-Heidelberg: Springer, 2008.
  13. Karasev M.V., Maslov V.P. Pseudodifferential operators and a canonical operator in general symplectic manifolds// Izv. Math.- 1984.- 23, № 2.- С. 277-305.
  14. Mishchenko A.S. Maslov index on symplectic manifolds. With supplement by A.T. Fomenko “Constructing the generalized Maslov class for the total space W = T∗(M) of the cotangent bundle”// Math. Notes.- 2022.-112, № 5.-С. 697-708.
  15. Mishchenko A.S. Notes on a Category-theoretic definition of Maslov classes of a Lagrangian manifold// Math. Notes.- 2023.- 114, № 3.- С. 412-414.
  16. Vassiliev V.A. Characteristic classes of Lagrangian and Legendre manifolds dual to singularities of caustics and wave fronts// Funct. Anal. Appl. - 1981.-15, № 3.- С. 164-173.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».