О поступательном прямолинейном движении твердого тела, несущего подвижную внутреннюю массу

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается движение механической системы, состоящей из корпуса (твёрдого тела) и внутренней массы (материальной точки), движущейся внутри него по окружности, центр которой совпадает с центром масс корпуса. Предполагается, что абсолютная величина скорости кругового движения внутренней массы постоянна. Корпус движется поступательно и прямолинейно по плоской горизонтальной поверхности, со стороны которой на него действуют силы вязкого и сухого кулонова трения. Движение внутренней массы происходит в вертикальной плоскости. Выполнено полное качественное исследование динамики системы. Показано, что всегда существует единственный режим движения корпуса с периодически меняющейся скоростью. Изучены все возможные типы указанного периодического движения. Установлено, что при любой начальной скорости корпус в зависимости от значений параметров задачи либо выйдет на периодический режим движения за конечное время, либо будет асимптотически к нему приближаться.

Об авторах

Б. С. Бардин

Московский авиационный институт (национальный исследовательский университет); Институт машиноведения им. А. А. Благонравова РАН

Автор, ответственный за переписку.
Email: bsbardin@yandex.ru
125993, Москва, Волоколамское шоссе, д. 4; 101990, Москва, Малый Харитоньевский переулок, д. 4

А. С. Панев

Московский авиационный институт (национальный исследовательский университет)

Email: a.s.panev@gmail.com
125993, Москва, Волоколамское шоссе, д. 4

Список литературы

  1. Бардин Б.С. О безударных прыжках тела, несущего подвижные массы// В сб.: «Труды XVIII Межд. симп. “Динамика виброударных сильно нелинейных систем” (DYVIS-2015)». - 2015. - С. 42-49.
  2. Бардин Б.С., Панёв А.С. О периодических движениях тела с подвижной внутренней массой по горизонтальной поверхности// Тр. МАИ. - 2015. -84.
  3. Бильченко Г.Г. Влияние подвижного груза на движение носителя// В сб.: «Аналитическая механика, устойчивость и управление. Труды XI Межд. Четаевской конференции». - 2017. - С. 37-44.
  4. Болотник Н.Н., Зейдис И.М., Циммерманн К., Яцун С.Ф. Динамика управляемых движений вибрационных систем// Изв. РАН. Теор. и сист. управл. - 2006. - № 5. - С. 157-167.
  5. Болотник Н.Н., Нунупаров А.М., Чащухин В.Г. Капсульный вибрационный робот с электромагнитным приводом и возвратной пружиной: динамика и управление движением// Изв. РАН. Теор. и сист. управл. - 2016. - № 6. - С. 146-160.
  6. Болотник Н.Н., Фигурина Т.Ю. Оптимальное управление прямолинейным движением твёрдого тела по шероховатой плоскости посредством перемещения двух внутренних масс// Прикл. мат. мех. - 2008. -72, № 2. - С. 216-229.
  7. Болотник Н.Н., Фигурина Т.Ю., Черноусько Ф.Л. Анализ и оптимизация движения тела, управляемого посредством подвижной внутренней массы// Прикл. мат. мех. - 2012. -71, № 1. - С. 3-22.
  8. Болотник Н.Н., Черноусько Ф.Л. Мобильные роботы, управляемые движением внутренних тел// Тр. Ин-та мат. и мех. УрО РАН. - 2010. -16, № 5. - С. 213-222.
  9. Волкова Л.Ю., Яцун С.Ф. Моделирование плоского управляемого движения трёхмассовой вибрационной системы// Изв. РАН. Теор. и сист. управл. - 2012. - № 6. - С. 122-141.
  10. Волкова Л.Ю., Яцун С.Ф. Изучение закономерностей движения прыгающего робота при различных положениях точки закрепления ноги// Нелин. динамика. - 2013. -9, № 2. - С. 327-342.
  11. Голицына М.В. Периодический режим движения вибрационного робота при ограничении по управлению// Прикл. мат. мех. - 2018. -82, № 1. - С. 3-15.
  12. Голицына М.В., Самсонов В.А. Оценка области допустимых параметров системы управления вибрационным роботом// Изв. РАН. Теор. и сист. управл. - 2018. - № 2. - С. 85-101.
  13. Иванов А.П. Основы теории систем с трением. - Ижевск: Ижевский ин-т комп. иссл., 2011.
  14. Иванов А.П., Сахаров А.В. Динамика твёрдого тела с подвижными внутренними массами и ротором на шероховатой плоскости// Нелин. динамика. - 2012. -8, № 4. - С. 763-772.
  15. Панёв А.С. О движении твёрдого тела с подвижной внутренней массой по горизонтальной поверхности в вязкой среде// Тр. МАИ. - 2018. -98.
  16. Соболев Н.А., Сорокин К.С. Экспериментальное исследование модели виброробота с вращающимися массами// Изв. РАН. Теор. и сист. управл. - 2007. - № 5. - С. 161-170.
  17. Сорокин К.С. Перемещение механизма по наклонной шероховатой плоскости за счёт движения внутренних осциллирующих масс// Изв. РАН. Теор. и сист. управл. - 2009. - № 6. - С. 150-158.
  18. Черноусько Ф.Л. О движении тела, содержащего подвижную внутреннюю массу// Докл. РАН. - 2005. -405, № 1. - С. 56-60.
  19. Фигурина Т.Ю. Оптимальное управление движением системы двух тел по прямой// Изв. РАН. Теор. и сист. управл. - 2007. - № 2. - С. 65-71.
  20. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью// Мат. сб. - 1960. -51, № 1. - С. 99-128.
  21. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. - М.: Наука, 1985.
  22. Черноусько Ф.Л. Анализ и оптимизация движения тела, управляемого посредством подвижной внутренней массы// Прикл. мат. мех. - 2006. -70, № 6. - С. 915-941.
  23. Черноусько Ф.Л. Движение тела по плоскости под влиянием подвижных внутренних масс// Докл. РАН. - 2016. -470, № 4. - С. 406-410.
  24. Черноусько Ф.Л. Оптимальное управление движением двухмассовой системы// Докл. РАН. - 2018. - 480, № 5. - С. 528-532.
  25. Яцун С.Ф., Безмен П.А., Сапронов К.А., Рублев С.Б. Динамика мобильного вибрационного робота с внутренней подвижной массой// Изв. Курск. гос. техн. ун-та. - 2010. -31, № 2. - С. 21-31.
  26. Яцун С.Ф., Волкова Л.Ю. Моделирование динамических режимов вибрационного робота, перемещающегося по поверхности с вязким сопротивлением// Спецтехн. и связь. - 2012. - № 3. - С. 25-29.
  27. Яцун С.Ф., Лупехина И.В., Сапронов К.А. Моделирование движения прыгающего вибрационного микроробота// Изв. Курск. гос. техн. ун-та. - 2009. -27, № 2. - С. 25-31.
  28. Яцун С.Ф., Мищенко В.Я., Сафаров Д.И. Исследование движения двухмассового вибрационного робота// Изв. вузов. Сер. Машин. - 2006. - № 5. - С. 32-42.
  29. Яцун С.Ф., Разинькова А.В., Гранкин А.Н. Исследование движения виброробота с электромагнитным приводом// Изв. вузов. Сер. Машин. - 2007. - № 5. - С. 53-64.
  30. Bardin B., Panev A. On dynamics of a rigid body moving on a horizontal plane by means of motion of an internal particle// Vibroeng. Procedia. - 2016. -8. - С. 135-141.
  31. Bardin B.S., Panev A.S. On the motion of a rigid body with an internal moving point mass on a horizontal plane// AIP Conf. Proc. - 2018. -1959. - 030002.
  32. Bardin B.S., Panev A.S. On the motion of a body with a moving internal mass on a rough horizontal plane// Russ. J. Nonlin. Dyn. - 2018. -14, № 4. - С. 519-542.
  33. Fang H., Xu J. Stick-slip effect in a vibration-driven system with dry friction: Sliding bifurcations and optimization// J. Appl. Mech. - 2014. -81, № 5. - 061001.
  34. Vartholomeos P., Papadopoulos E. Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators// J. Dyn. Syst. Meas. Control. Trans. ASME. - 2006. -128, № 1. - С. 122-133.
  35. Vartholomeos P., Papadopoulos E. Analysis and experiments on the force capabilities of centripetal-forceactuated microrobotic platforms// IEEE Trans. Robot. - 2008. -24. - С. 588-599.
  36. Vartholomeos P., Papadopoulos E., Vlachos K. Analysis and motion control of a centrifugal-force microrobotic platform// IEEE Trans. Automat. Sci. Eng. - 2013. -10. - С. 545-553.
  37. Vlachos K., Papadimitriou D., Papadopoulos E. Vibration-driven microrobot positioning methodologies for nonholonomic constraint compensation// Engineering. - 2015. -1. - С. 66-72.
  38. Wang Q.M., Zhang W.M., Ju J.C. Kinematics and dynamics analysis of a micro-robotic platform driven by inertial-force propulsion// Appl. Mech. Mater. - 2015. -733. - С. 531-534.
  39. Xiong Z., Jian X. Locomotion analysis of a vibration-driven system with three acceleration controlled internal masses// Adv. Mech. Eng. - 2015. -7. - С. 1-12.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».