К теории анизотропной плоской упругости


Цитировать

Полный текст

Аннотация

Для системы Ламе плоской анизотропной теории упругости введены обобщенные потенциалы двойного слоя, связанные с теоретико-функциональным подходом. Эти потенциалы построены как для вектора смещений - решения системы Ламе, так и для сопряженных вектор-функций, описывающих тензор напряжений. Получено интегральное представление этих решений через указанные потенциалы. Как следствие, первая и вторая краевые задачи в различных классах (Гельдера, Харди, класса только непрерывных в замкнутой области функций) редуцированы к эквивалентной системе граничных уравнений Фредгольма в соответствующих пространствах. Заметим, что подобный подход был развит [13, 14] для общих эллиптических систем второго порядка с постоянными (и только старшими) коэффициентами. Однако ввиду важного прикладного значения представляет интерес привести развернутое изложение непосредственно для системы Ламе. В качестве иллюстрации полученных результатов в последних двух разделах рассмотрена задача Дирихле с кусочно постоянными коэффициентами Ламе, когда на кривой раздела двух сред задаются контактные условия. Эта задача редуцирована к эквивалентной системе граничных уравнений Фредгольма. Подробно исследован характер гладкости ядер полученных интегральных операторов в зависимости от гладкости граничных контуров.

Об авторах

Александр Павлович Солдатов

Национальный исследовательский университет «Белгородский государственный университет»

Email: soldatov48@gmail.com
308015, г. Белгород, ул. Победы, д. 85

Список литературы

  1. Александров А. В., Солдатов А. П. Гpаничные свойства интегpалов типа Коши. Lp-случай// Дифф. уpавн. - 1991. - 27, № 1. - С. 3-8.
  2. Голузин Г. М. Геометрическая теория функций комплексного переменного. - М.: Наука, 1972.
  3. Гохберг И. Ц., Крупник Н. И. Введение в теорию одномерных сингулярных уравнений. - Кишинев: Штиинца, 1973.
  4. Купрадзе В. Д. Методы потенциала в теории упругости. - М.: Физматгиз, 1963.
  5. Лехницкий Г. Г. Теория упругости анизотропного тела. - М.-Л.: ГИТТЛ, 1950.
  6. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. - М.: Наука, 1966.
  7. Мусхелишвили Н. И. Сингулярные интегральные уравнения. - М.: Наука, 1968.
  8. Пале Р. Семинар по теореме Атьи-Зингера об индексе. - М.: Мир, 1970.
  9. Рудин У. Функциональный анализ. - М.: Мир, 1991.
  10. Солдатов А. П. Метод теоpии функций в кpаевых задачах на плоскости. I. Гладкий случай// Изв. АH СССР. Сеp. Мат. - 1991. - 55, № 5. - C. 1070-1100.
  11. Солдатов А. П. Гипераналитические функции и их приложения// Соврем. мат. и ее прилож. - 2004. - 15. - С. 142-199.
  12. Солдатов А. П. Пространство Харди решений эллиптических систем первого порядка// Докл. РАН. - 2007. - 416, № 1. - С. 26-30.
  13. Солдатов А. П. Задача Дирихле для слабо связанных эллиптических систем на плоскости// Дифф. уравн. - 2013. - 49, № 6. - С. 734-745.
  14. Солдатов А. П. Задача Неймана для эллиптических систем на плоскости// Соврем. мат. Фундам. направл. - 2013. - 48. - С. 120-133.
  15. Солдатов А. П., Чернова О. В. Задача Римана-Гильберта для эллиптической системы первого порядка в классах Гельдера// Науч. ведом. БелГУ. - 2009. - 13, вып. 17/2. - С. 115-121.
  16. Фикера Г. Теоремы существования в теории упругости. - М.: Мир, 1974.
  17. Begehr H., Lin W. A mixed-contact problem in orthotropic elasticity// В сб.: «Partial dii erential equations with real analysis». - Harlow: Longman Scienti c & Technical, 1992. - С. 219-239.
  18. Begehr H., Lin W. A mixed-contact problem in orthotropic elasticity// В сб.: «Complex analytic methods for partial di erential equations. An introductory text». - Singapore, World Scienti c, 1994.
  19. Douglis A. A function-theoretical approach to elliptic systems of equations in two variables// Commun. Pure Appl. Math. - 1953. - 6. - С. 259-289.
  20. England A. H.Complex variable methods in elasticity. - London etc.: Wiley-Interscience, 1971.
  21. Gilbert R. P., Wendland W. L. Analytic, generalized, hyper-analytic function theory and an application to elasticity// Proc. Roy. Soc. Edinburgh Sect. A. - 1975. - 73A. - С. 317-371.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».