Abstract Mixed Boundary-Value and Spectral Conjugation Problems and Their Applications
- Authors: Kopachevskii N.D.1, Radomirskaya K.A.1
-
Affiliations:
- V. I. Vernadsky Crimean Federal University
- Issue: Vol 61, No (2016)
- Pages: 67-102
- Section: Articles
- URL: https://journal-vniispk.ru/2413-3639/article/view/347292
- ID: 347292
Cite item
Full Text
Abstract
About the authors
N. D. Kopachevskii
V. I. Vernadsky Crimean Federal University
Email: kopachevsky@list.ru
Vernadsky Avenue, 4, Simferopol, 295007, Russia
K. A. Radomirskaya
V. I. Vernadsky Crimean Federal University
Email: radomirskaya@mail.ru
Vernadsky Avenue, 4, Simferopol, 295007, Russia
References
- Агранович М. С. Соболевские пространства, их обобщения и эллиптические задачи в областях с гладкой и липшицевой границей. - М.: МЦНМО, 2013.
- Агранович М. С., Амосов Г. А., Левитин М. Спектральные задачи для системы Ламе в гладких и негладких областях со спектральным параметром в краевом условии// Росс. ж. мат. физ. - 1999. - 6, № 3. - С. 247-281.
- Агранович М. С., Менникен Р. Спектральные задачи для уравнения Гельмгольца со спектральным параметром в граничных условиях на негладкой поверхности// Мат. сб. - 1999. - 30, № 1. - С. 29- 68.
- Бабский В. Г., Жуков М. Ю., Копачевский Н. Д., Мышкис А. Д., Слобожанин Л. А., Тюпцов А. Д. Методы решения задач гидромеханики для условий невесомости. - Киев: Наукова думка, 1992.
- Бабский В. Г., Копачевский Н. Д., Мышкис А. Д., Слобожанин Л. А., Тюпцов А. Д. Гидромеханика невесомости. - М.: Наука, 1976.
- Войтицкий В. И. Абстрактная спектральная задача Стефана// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. Сер. Мат. Мех. Инфoрм. Kиберн. - 2006. - 19, № 2. - С. 20-28.
- Войтицкий В. И. О спектральных задачах, порожденных задачей Стефана с условиями Гиббса- Томсона// Нелин. гранич. задачи. - 2007. - 17. - С. 31-49.
- Войтицкий В. И., Копачевский Н. Д., Старков П. А. Многокомпонентные задачи сопряжения и вспомогательные абстрактные краевые задачи// Соврем. мат. Фундам. направл. - 2009. - 34. - С. 5-44.
- Волевич Л. Р., Гиндикин С. Г. Обобщенные функции и уравнения в свертках. - М.: Наука, 1994.
- Горбачук В. И. Диссипативные граничные задачи для эллиптических дифференциальных уравнений// В сб.: «Функциональные и численные методы математической физики», Ин-т матем. и механики. - Киев: Наукова думка, 1998. - С. 60-63.
- Копачевский Н. Д. Об абстрактной формуле Грина для тройки гильбертовых пространств и ее приложениях к задаче Стокса// Тавр. вестн. информ. и мат. - 2004. - 2. - С. 52-80.
- Копачевский Н. Д. Абстрактная формула Грина для смешанных краевых задач// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. Сер. Мат. Мех. Информ. Киберн. - 2007. - 20, № 2. - С. 3-12.
- Копачевский Н. Д. Об абстрактной формуле Грина для смешанных краевых задач и некоторых ее приложениях// Спектр. и эволюц. задачи. - 2011. - 21, № 1. - С. 2-39.
- Копачевский Н. Д. Об абстрактной формуле Грина для тройки гильбертовых пространств и полуторалинейных форм// Соврем. мат. Фундам. направл. - 2015. - 57. - С. 71-107.
- Копачевский Н. Д., Крейн С. Г. Абстрактная формула Грина для тройки гильбертовых пространств, абстрактные краевые и спектральные задачи// Укр. мат. вестн. - 2004. - 1, № 1. - С. 69-97.
- Копачевский Н. Д., Крейн С. Г., Нго Зуй Кан Операторные методы в линейной гидродинамике: эволюционные и спектральные задачи. - М.: Наука, 1989.
- Копачевский Н. Д., Радомирская К. А. Абстрактные смешанные краевые задачи сопряжения// Межд. науч. конф. «Современные методы и проблемы теории операторов и гармонического анализа и их приложения - V», Ростов-на-Дону. - 2015. - С. 211.
- Копачевский Н. Д., Радомирская К. А. Абстрактные краевые и спектральные задачи сопряжения// XXVI Крымская осенняя математическая школа-симпозиум по спектральным и эволюционным задачам. - 2015. - С. 52.
- Крейн С. Г. О колебаниях вязкой жидкости в сосуде// Докл. АН СССР. - 1964. - 159, № 2. - С. 262- 265.
- Крейн С. Г., Лаптев Г. И. К задаче о движении вязкой жидкости в открытом сосуде// Функц. анализ и его прилож. - 1968. - 1, № 2. - С. 40-50.
- Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. - М.: Мир, 1971.
- Обэн Ж.-П. Приближенное решение эллиптических краевых задач. - М.: Мир, 1977.
- Старков П. А. Операторный подход к задачам сопряжения// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. Сер. Мат. Мех. Информ. Киберн. - 2002. - 15, № 2. - С. 82-88.
- Старков П. А. О базисности системы собственных элементов в задачах сопряжения// Тавр. вестн. информ. и мат. - 2003. - 1. - С. 118-131.
- Старков П. А. Примеры многокомпонентных задач сопряжения// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. Сер. Мат. Мех. Инфoрм. Kиберн. - 2005. - 18, № 1. - С. 89-94.
- Agranovich M. S. Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary// Russ. J. Math. Phys. - 2008. - 15, № 2. - С. 146-155.
- Agranovich M. S. Sobolev spaces, their generalizations, and elliptic problems in smooth and lipschitz domains. - Cham: Springer, 2015.
- Agranovich M. S., Katsenelenbanm B. Z., Sivov A. N., Voitovich N. N. Generalized method of eigenoscillations in difraction theory. - Berlin: Wiley-VCN, 1999.
- Aubin J.-P. Abstract boundary-value operators and their adjoint// Rend. Semin. Math. Univ. Padova. - 1970. - 43. - С. 1-33.
- Babckii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., Tyuptsov A. D. Low-gravity uid mechanics. - Springer, 1987.
- Kopachevsky N. D., Krein S. G. Operator approach to linear problems of hydrodynamics. Vol. 1: Self-adjoint problems for an ideal uid. - Basel-Boston-Berlin: Birkhauser, 2001.
- Kopachevsky N. D., Krein S. G. Operator approach to linear problems of hydrodynamics. Vol. 2: Nonselfadjoint problems for viscous uid. - Basel-Boston-Berlin: Birkhauser, 2003.
- McLean W. Strongly elliptic systems and boundary integral equations. - Cambridge: Cambridge University Press, 2000.
- Rychkov V. S. On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains//j. Lond. Math. Soc. - 1999. - 60, № 1. - С. 237-257.
- Showalter R. E. Hilbert space methods for partial di erential equations. - San Marcos: Southwest Texas State Univ., 1994.
- Voytitsky V. I., Kopachevsky N. D. On the modi ed spectral Stefan problem and its abstract generalizations// Modern analysis and applications. The Mark Krein centenary conference. Volume 2: Di erential operators and mechanics. Papers based on invited talks at the international conference on modern analysis and applications, Odessa, Ukraine, April 9-14, 2007. - Basel: Birkhauser, 2009. - С. 381- 394.
- Voytitsky V. I., Kopachevsky N. D., Starkov P. A. Multicomponent conjugation problems and auxiliary abstract boundary-value problems//j. Math. Sci. - 2010. - 170, № 2. - С. 131-172.
Supplementary files
