Влияние численной диффузии на скорость роста вязких пальцев при численной реализации модели Писмана методом конечных объемов
- Авторы: Апушкинская Д.Е.1, Лазарева Г.Г.1, Окишев В.А.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 68, № 4 (2022)
- Страницы: 553-563
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2413-3639/article/view/327790
- DOI: https://doi.org/10.22363/2413-3639-2022-68-4-553-563
- ID: 327790
Цитировать
Полный текст
Аннотация
Рассмотрена численная модель вытеснения нефти смесью воды и полимера на основе модели Писмана. Проведены численные эксперименты с помощью пакета DuMux, представляющего собой программную библиотеку, предназначенную для моделирования нестационарных гидродинамических задач в пористых средах. Пакет программ использует вариант метода конечных объемов «vertex-centered». Исследовано влияние диффузии на скорость роста «вязких пальцев». Получены зависимости скорости переднего фронта от значения модельной диффузии для трех моделей вязкости. Показано, что влияние численной диффузии на скорость роста «вязких пальцев» ставит ограничения на расчеты при малых значениях модельной диффузии.
Ключевые слова
Об авторах
Д. Е. Апушкинская
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: apuskinskaya-de@rudn.ru
Москва, Россия
Г. Г. Лазарева
Российский университет дружбы народов
Email: lazareva-gg@rudn.ru
Москва, Россия
В. А. Окишев
Российский университет дружбы народов
Email: okishev-va@rudn.ru
Москва, Россия
Список литературы
- Азиз Х., Сеттари Э. Математическое моделирование пластовых систем. - М.-Ижевск: Инст. комп. иссл., 2004.
- Ламб Г. Гидродинамика. - М.-Л.: Гостехиздат, 1947.
- Логвинов О. А. Об устойчивости боковой поверхности вязких пальцев, образующихся при вытеснении жидкости из ячейки Хеле-Шоу// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. - 2011. - № 2. - С. 40-46.
- Тятюшкина Е. С., Козелков А. С., Куркин А. А., Курулин В. В., Ефремов В. Р., Уткин Д. А. Оценка численной диффузии метода конечных объемов при моделировании поверхностных волн// Вычисл. техн. - 2019. - 24, № 1. - С. 106-119.
- Arun R., Dawson S. T. M., Schmid P. J., Laskari A., McKeon B. J. Control of instability by injection rate oscillations in a radial Hele-Shaw cell// Phys. Rev. Fluids. - 2020. - 5. - 123902.
- Bakharev F., Campoli L., Enin A., Matveenko S., Petrova Y., Tikhomirov S., Yakovlev A. Numerical investigation of viscous ngering phenomenon for raw eld data// Transp. Porous Med. - 2020. - 132.- С. 443-464.
- Bakharev F., Enin A., Groman A., Kalyuzhnuk A., Matveenko S., Petrova Yu., Starkov I., Tikhomirov S. S. Velocity of viscous ngers in miscible displacement// J. Comput. Appl. Math. - 2022. - 402. - 113808.
- Booth R. J. S. Miscible ow through porous media. - Канд. дисс., 2008.
- Booth R. J. S. On the growth of the mixing zone in miscible viscous ngering// J. Fluid Mech. - 2010. - 655. - С. 527-539.
- Chen Ch., Yang X. A second-order time accurate and fully-decoupled numerical scheme of the Darcy- Newtonian-Nematic model for two-phase complex uids con ned in the Hele-Shaw cell// J. Comput. Phys. - 2022. - 456. - 111026.
- De Wit A., Homsy G. M. Viscous ngering in reaction-diusion systems// J. Chem. Phys. - 1999. - 110.- С. 8663-8675.
- DuMux Code Documentation (doxygen), Ver. 3.5. - https://dumux.org/docs/doxygen/master/a01628.html, 2022.
- DuMux Handbook, Ver. 3.5. - http://dumux.org, 2022.
- Fontana J., Juel A., Bergemann N., Heil M., Hazel A. Modelling nger propagation in elasto-rigid channels// J. Fluid Mech. - 2021. - 916. - A27.
- Karimi F., Maleki Jirsaraei N., Azizi S. Simulation of viscous ngering due to Sa man-Taylor instability in Hele-Shaw cell// J. Nanoelectron. Materials. - 2019. - 12, № 3. - С. 309-318.
- Kupervasser O. Laplacian growth without surface tension in ltration combustion: analytical pole solution// В сб.: «Pole solutions for ame front propagation. Mathematical and analytical techniques with applications to engineering». - Cham: Springer, 2015. - С. 85-107.
- Lu D., Municchi F., Christov I. C. Computational analysis of interfacial dynamics in angled Hele-Shaw cells: instability regimes// Transp. Porous Med. - 2020. - 131. - С. 907-934.
- Lustri Ch. J., Green Ch. C., McCue S. W. Hele-Shaw bubble via exponential asymptotics// SIAM J. Appl. Math. - 2020. - 80, № 1. - С. 289-311.
- Noskov M. D., Istomin A. D., Kesler A. G. Stochastic-deterministic modeling of the development of hydrodynamic instability in ltration of mixing uids// J. Eng. Phys. Thermophys. - 2002. - 75. - С. 352- 358.
- Sa man P. G., Taylor G. The penetration of a uid into a porous medium or a Hele-Shaw cell containing a more viscous uid// Proc. Roy. Soc. London. A. - 1958. - 245. - С. 312-329.
- Singh P., Lalitha R., Mondal S. Sa man-Taylor instability in a radial Hele-Shaw cell for a shear-dependent rheological uid// J. Non-Newtonian Fluid Mech. - 2021. - 294. - 104579.
- Skopintsev A. M., Dontsov E. V., Kovtunenko P. V., Baykin A. N., Golovin S. V. The coupling of an enhanced pseudo-3D model for hydraulic fracturing with a proppant transport model// Eng. Fracture Mech. - 2020. - 236. - 107177.
- Smirnov N. N., Kisselev A. B., Nikitin V. F., Zvyaguin A. V., Thiercelin M., Legros J. C. Hydraulic fracturing and ltration in porous medium// SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, October 2006.
- Smirnov N. N., Nikitin V. F., Maximenko A., Thiercelin M., Legros J. C. Instability and mixing ux in frontal displacement of viscous uids from porous media// Phys. Fluids. - 2005. - 17. - 084102. Contemporary Mathematics. Fundamental Directions, 2022, Vol. 68, No. 4, 553-563 561
- Sorbie K. S. Polymer-improved oil recovery. - Dordrecht: Springer, 1991.
- Tan C. T., Homsy G. M., Stability of miscible displacements in porous media: rectilinear ow// Phys. Fluids. - 1986. - 29, № 11. - С. 3549-3556.
- Yang X. Fully-discrete, decoupled, second-order time-accurate and energy stable nite element numerical scheme of the Cahn-Hilliard binary surfactant model con ned in the Hele-Shaw cell// ESAIM Math. Model. Numer. Anal. - 2022. - 56, № 2. - С. 651-678.
Дополнительные файлы

