Distribution of sea surface elevations in the form of a two-component Gaussian mixture

Cover Page

Cite item

Abstract

The approximation of the probability density function of sea surface elevations by a two-component Gaussian mixture has been verified. For verification, the data of direct wave measurements obtained on a stationary oceanographic platform, installed in the Black Sea, were used. The approximation correctness criterion is the relative error ε of deviation of the model of probability densities function from the experimental function calculated from the measurement data. The average error ⟨ε⟩ over the ensemble of situations is small if | ξ | < 3. The standard deviation δ is minimal if | ξ | ≈ 0 and is equal to 0.12, if | ξ | = 3 then δ ≈ 0.5. It is shown that the error ⟨ε⟩ has a systematic component, which depends on the deviations of the third and fourth statistical moments from the values corresponding to the Gaussian distribution. A semi-empirical relationship has been constructed to take this component into account. It is noted that the approximation accuracy can be increased by 2–3 times by eliminating the systematic component.

Full Text

Introduction

Sea surface waves are a weakly nonlinear process, and the statistical distributions of sea surface elevations and slopes are close to the Gaussian distribution [1]. Although deviations from the Gaussian distribution are small, they play an important role in applications related to ocean remote sensing [2, 3], as well as when forecasting the occurrence of anomalous waves [4].

As a rule, distributions based on truncated Gram–Charlier or Edgeworth series are used for the sea surface statistical description [5, 6]. The distributions are the expansion of the desired probability density function in Chebyshev–Hermite orthogonal polynomials. The use of truncated series leads to distortions in the desired probability density function due to the appearance of negative values in it, as well as several local maxima [7–9].

The relevance of the search for new approaches to the statistical description of the sea surface is determined by the fact that existing models do not make it possible to construct a probability density function of sea surface elevations over the entire range of their changes. One possible solution to this problem is to approximate the distribution of a quasi-Gaussian process by a two-component Gaussian mixture. Distributions of this type have not yet found wide application in oceanology, which may be due to the complex procedure for calculating their parameters [10]. For the first time, the use of such a model to describe the sea surface was independently proposed in [11, 12], in which probability density functions were constructed for the sea surface slopes. Recently, a two-component Gaussian mixture has been proposed to describe the distributions of sea surface elevations [13]. Unknown parameters for the desired Gaussian mixture are calculated based on the known statistical moments as in the construction of the Gram–Charlier and Edgeworth distributions.

This work aims at analyzing the possibility and limits of a two-component Gaussian mixture in order to describe the distribution of sea surface elevations. The analysis is based on direct measurements of sea waves carried out in the Black Sea.

Two-component Gaussian mixture

Finite Gaussian mixtures are widely used in various fields to approximate unknown probability density functions [9, 14]. The two-component Gaussian mixture of random variable ξ is as follows [15]

PSξ=iαi2πσiexpξmi22 σi2,   (1)

where αi – weight of the i-th component (i = 1, 2), αi ∈ (1, 2); mi – expected value; σi2 – variance. Weighting coefficients satisfy the condition

α1 + α2 = 1. (2)

Taking into account condition (2), it is necessary to find five parameters:
m1, m2, σ1, σ2 and α1 to construct PS(ξ). In [13], it was proposed to calculate them based on the first five statistical moments of sea surface elevations. The disadvantage of this approach is that according to wave measurements under marine conditions, as a rule, statistical moments are determined only up to the fourth order inclusive [16–18]. Therefore, we will use the first four statistical moments to calculate the model parameters (m1, m2, σ1, σ2) leaving the fifth parameter (α1) free [11]. Parameter α1 will be varied to satisfy the condition of distribution unimodality.

The procedure for calculating model parameters (1) is described in [10]. It amounts to solving the system of equations

α1m1+(1α1)m2=μ1,   (3)

α1m12+σ12+(1α1)m22+σ22=μ2,   (4)

α1m13+3m1σ12+(1α1)m23+3m2σ22=μ3,   (5)

α1m14+6m12σ12+3σ14+(1α1)m24+6m22σ22+3σ24=μ4,   (6)

where μi – statistical moment of order i :

μj=ξjPS(ξ)dξ,

Let us assume that the average level of the surface is zero (μ1 = 0), and the variance of the analyzed random variable is equal to 1 (μ2 = 1). Parameters μ3 and μ4 – 3 are the skewness and excess kurtosis, respectively. System of equations (3)–(6) is symmetric with respect to triples of parameters (m1, σ12, α1) and (m2, σ22, α2).

Verification

To verify the model probability density function of sea surface elevations (1), the data of wave measurements obtained on a stationary oceanographic platform of Marine Hydrophysical Institute of RAS were used [19]. The measurements were carried out during December 2018. The platform was located in the Black Sea 600 m from the coast at a depth of about 30 m. The waves were measured with a string wave recorder [20].

The measurements were carried out under wind conditions that varied from calm to wind speed of 25 m/s. Significant wave heights (the average height of 1/3 of the highest waves) varied from 0.23 m to 2.26 m, the maximum wave height reached 4.9 m. The wavelengths corresponding to the peak of the wave spectrum ranged from 10 to 120 m.

The verification took place as follows. Continuous wave measurements were divided into wave records lasting 20 min. The total volume of data for analysis was more than 2200 wave records. Each wave record was centered and normalized so that its variance was equal to one, then experimental probability density function PE (ξ) was calculated for each wave record. Statistical moments μ3 = ⟨ ξ3⟩ and μ4 = ⟨ξ4⟩ were also determined so that to calculate the parameters of two-component Gaussian mixture PS (ξ). Here and below, symbol ⟨ ⟩ means averaging.

According to wave measurements previously carried out in the Black Sea, the values of statistical moments μ3 and μ4 can be found mainly in the following ranges [19]

0.2<μ3<0.3 и 2.6<μ4<3.4.   (7)

The same ranges were determined from measurements in the North Sea [18]. As a rule, exceeding the specified ranges occurs in situations where abnormally high waves (rogue waves) are observed. [17]. In this work, we will limit ourselves to the analysis of situations when μ3 and μ4 satisfy condition (7).

The experimental probability density function is calculated based on the analysis of the histogram of sea surface elevations. Width of intervals Dξ was taken equal to 0.45. Function PE (ξ) was obtained from the histogram by normalizing it to the total number of points in the wave record and to the width of the interval.

The verification procedure for a two-component Gaussian mixture model consists of comparing functions PE (ξ) and PS (ξ). The criterion for the correspondence of model (1) to wave measurement data is relative error

ε(ξ)=PS(ξ)PE(ξ)PE(ξ),

for which average value ⟨ε(ξ)⟩ and standard deviation δ (ξ) = ⟨(ε(ξ) – ⟨ε(ξ)⟩)20.5 are calculated.

To calculate Gaussian mixture PS (ξ), the procedure described in [10] was chosen. Taking into account condition (2), system of equations (3)–(6) was reduced to one sixth degree polynomial equation in m1

2α12(α1α121)m164μ3α1(2α11)(α11)2m13++3(μ43)α1(α11)3m12+μ32(α11)4=0,     (8)

the solutions of which for given values μ3 and μ4 were found numerically by Newton’s method by varying α1 The coefficients included in equation (8) were analyzed in [10], where it was shown that, except for the rare case when μ3 = 0 and μ4 > 3, it could always be solved and the construction of a probability density function was possible. From several solutions obtained for various possible α1, the one was chosen that corresponded to the physical condition of unimodality of the resulting distribution and the positivity of values σ12 и σ22, which were recalculated, like m2, from value m1 according to the method discussed in [3]. Values μ3 and μ4 calculated for model Gaussian mixture PS (ξ) obtained as a result of solving equation (8) were compared with the values calculated from the wave record and used in original equations (3)–(6). The accuracy of agreement between values μ3 and μ4 calculated from the Gaussian mixture and from the wave record is achieved no worse than 10–3.

Figure 1 shows functions ⟨ε(ξ)⟩ and δ( ξ). Here, N(ξ) is number of points from which statistical characteristics were calculated in given interval Dξ. Functions ⟨ε(ξ)⟩ and δ( ξ) are average over the ensemble of situations in which measurements were carried out, with μ3 and μ4 satisfying condition (7). Parameters μ3 = 0 and μ4 > 3 in 11 wave records led to their exclusion from consideration for the reason stated above.

Analysis of deviations of model function PS (ξ) from experimental one PE (ξ) given in Fig. 1 indicates their smallness in the vicinity of point ξ = 0 and increase with | ξ |. As for range | ξ | < 3, the parameters characterizing this deviation satisfy conditions

ε(ξ)<0.05, δξ<0.3.

For further analysis, all data were divided into groups corresponding to four ranges of the third statistical moment: group 1 – –0.2 < μ3 £ 0, group 2 – 0 < μ3 £ 0.1, group 3 – 0.1 < μ3 £ 0.2, group 4 – 0.2 < μ3 £ 0.3. Figure 2 shows variables ⟨ε(ξ, μ3)⟩ and δi (ξ,μ3) calculated for each group. Here, index i taking values from one to four corresponds to the group number. Parameter Ni (ξ, μ3) shows the number of points from which the values ⟨εi (ξ, μ3)⟩ and δi (ξ, μ3) were calculated. Average value of relative error ⟨εi (ξ, μ3)⟩ depends significantly on the group for which it was calculated. At the same time, standard deviation δi (ξ, μ3) is almost the same for all groups. The discrepancy between PS (ξ) and PE (ξ) depends on how much statistical moment μ3 deviates from the zero value corresponding to the Gaussian distribution. The greatest discrepancies are observed for group 4.

Fig. 1. Relative error ε(ξ) (a) and standard deviation δ(ξ) (b) calculated for an ensemble of situations, the number of points N(ξ) from which statistical characteristics were calculated in a given interval Dξ (c)

 

Fig. 2. Variables ε(ξ) (a), δ(ξ) (b), N(ξ) (c) calculated for four ranges μ3: –0.2 < μ3 £ 0 (blue), 0 < μ3 £ 0.1 (red), 0.1 < μ3 £ 0.2 (brown), 0.2 < μ3 £ 0.3 (green)

 

We use a similar approach to analyze the approximation of the probability density of sea surface elevations for different values of the fourth statistical moment. Let us divide the data into groups corresponding to four ranges μ4: group 1 – 2.6 < μ4 £ 2.8, group 2 – 2.8 < μ4 £ 3.0, group 3 – 3.0 < μ4 £ 3.2, group 4 – 3.2 < μ4 £ 3.4. Figure 3 shows variables ⟨εi (ξ, μ4)⟩ and δi (ξ, μ4) calculated for the specified groups.

 

Fig. 3. Variables ε(ξ) (a), δ(ξ) (b), N(ξ) (c) calculated for four ranges μ4: 2.6 < μ4 £ 2.8 (blue), 2.8 < μ4 £ 3.0 (red), 3.0 < μ4 £ 3.2 (brown), 3.2 < μ4 £ 3.4 (green)

 

Division into groups according to the range of changes in statistical moments μ3 and μ4 results in a significant change in the relative error in the approximation of the probability density of sea surface elevations. In range | ξ | < 2, values δi (ξ, μ3) and δi (ξ, μ4) are 2–3 times lower than values δ(ξ) calculated for the entire ensemble of situations. This makes it possible to describe the probability density function by the semi-empirical relationship

Pξξ=PSξ1+εE(ξ),

where ⟨εE (ξ)⟩ is average relative error calculated for corresponding ranges μ3 and μ4.

Conclusion

The approximation of the probability density function of sea surface elevations by a two-component Gaussian mixture was verified for the values of the third and fourth statistical moments which vary within –0.2 < μ3 < 0.3 and 2.6 < μ4 < 3.4 and are characteristic of the Black Sea coastal zone. The criterion for the correctness of the approximation is the deviation of the model probability density function from that one calculated from wave measurement data, which is characterized by relative error.

In range | ξ | < 3, values of average relative error ⟨ε(ξ)⟩ and its standard deviation δ(ξ) are small and satisfy condition |⟨ε(ξ)⟩|  < 0.05, δ(ξ) < 0.3. Approximation error ⟨ε(ξ)⟩ has a systematic component which depends on the deviations of the third and fourth statistical moments from the values corresponding to the Gaussian distribution. A semi-empirical relationship has been constructed to take this component into account. The elimination of the systematic component will reduce δ(ξ), and the approximation accuracy can accordingly be increased by 2–3 times.

×

About the authors

Aleksandr S. Zapevalov

Marine Hydrophysical Institute of RAS

Author for correspondence.
Email: sevzepter@mail.ru
ORCID iD: 0000-0001-9942-2796
Scopus Author ID: 7004433476
ResearcherId: V-7880-2017

Chief Research Associate, Dr.Sci. (Phys.-Math.)

Russian Federation, 2 Kapitanskaya St., Sevastopol, 299011

Aleksandr S. Knyazkov

Marine Hydrophysical Institute of RAS

Email: fizfak83@yandex.ru
ORCID iD: 0000-0003-1119-1757
SPIN-code: 4254-4825

Leading Engineer

Russian Federation, 2 Kapitanskaya St., Sevastopol, 299011

References

  1. Longuet-Higgins, M.S., 1963. The Effect of Non-Linearities on Statistical Distributions in the Theory of Sea Waves. Journal of Fluid Mechanics, 17(3), pp. 459–480. https://doi.org/10.1017/S0022112063001452
  2. Hayne, G.S., 1980. Radar Altimeter Mean Return Waveforms from Near-Normal-Incidence Ocean Surface Scattering. IEEE Transactions on Antennas and Propagation, 28(5), pp. 687–692. https://doi.org/10.1109/TAP.1980.1142398
  3. Kay, S., Hedley, J.D. and Lavender, S., 2009. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sensing, 1(4), pp. 697–730. https://doi.org/10.3390/rs1040697
  4. Annenkov, S.Y. and Shrira, V.I., 2014. Evaluation of skewness and kurtosis of wind waves parameterized by JONSWAP spectra. Journal of Physical Oceanography, 44(6), pp. 1582–1594. https://doi.org/10.1175/JPO-D-13-0218.1
  5. Bréon, F.M. and Henriot, N., 2006. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. Journal of Geophysical Research: Oceans, 111(C6), C06005. https://doi.org/10.1029/2005JC003343
  6. Callahan, P.S. and Rodriguez, E., 2004. Retracking of Jason-1 Data. Marine Geodesy, 27(3–4), pp. 391–407. https://doi.org/10.1080/01490410490902098
  7. Kwon, O.K., 2022. Analytic Expressions for the Positive Definite and Unimodal Regions of Gram-Charlier Series. Communications in Statistics – Theory and Methods, 51(15), pp. 5064–5084. https://doi.org/10.1080/03610926.2020.1833219
  8. Lin, W. and Zhang, J.E., 2022. The Valid Regions of Gram–Charlier Densities with High-Order Cumulants. Journal of Computational and Applied Mathematics, 407, 113945. https://doi.org/10.1016/j.cam.2021.113945
  9. Blinnikov, S. and Moessner, R., 1998. Expansions for nearly Gaussian Distributions. Astronomy and Astrophysics Supplement Series, 130(1), pp. 193–205. https://doi.org/10.1051/aas:1998221
  10. Zapevalov, A.S. and Knyazkov, A.S., 2022. Statistical Description of the Sea Surface by Two-Component Gaussian Mixture. Physical Oceanography, 29(4), pp. 395–403.
  11. Zapevalov, A.S. and Ratner, Y.B., 2003. Analytic Model of the Probability Density of Slopes of the Sea Surface. Physical Oceanography, 13(1), pp. 1–13. https://doi.org/10.1023/A:1022444703787
  12. Tatarskii, V.I., 2003. Multi-Gaussian Representation of the Cox–Munk Distribution for Slopes of Wind-Driven Waves. Journal of Atmospheric and Oceanic Technology, 20(11), pp. 1697–1705. https://doi.org/10.1175/1520-0426(2003)020<1697:MROTCD>2.0.CO;2
  13. Gao, Z., Sun Z. and Liang, S., 2020. Probability Density Function for Wave Elevation Based on Gaussian Mixture Models. Ocean Engineering, 213, 107815. https://doi.org/10.1016/j.oceaneng.2020.107815
  14. Carreira-Perpinan, M.A., 2000. Mode-Finding for Mixtures of Gaussian Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), pp. 1318–1323. https://doi.org/10.1109/34.888716
  15. Aprausheva, N.N. and Sorokin, S.V., 2013. Exact Equation of the Boundary of Unimodal and Bimodal Domains of a Two-Component Gaussian Mixture. Pattern Recognition and Image Analysis, 23(3), pp. 341–347. https://doi.org/10.1134/S1054661813030024
  16. Babanin, A.V. and Polnikov, V.G., 1995. On the Non-Gaussian Nature of Wind Waves. Physical Oceanography, 6(3), pp. 241–245. https://doi.org/10.1007/BF02197522
  17. Guedes Soares, C., Cherneva, Z. and Antão, E.M., 2003. Characteristics of Abnormal Waves in North Sea Storm Sea States. Applied Ocean Research, 25(6), pp. 337–344. https://doi.org/10.1016/j.apor.2004.02.005
  18. Jha, A.K. and Winterstein, S.R., 2000. Nonlinear Random Ocean Waves: Prediction and Comparison with Data. In: ASME, 2000. Proceedings of the 19th International Offshore Mechanics and Arctic Engineering Symposium. New Orleans, USA. Paper No. 00-6125.
  19. Zapevalov, A.S. and Garmashov, A.V., 2021. Skewness and Kurtosis of the Surface Wave in the Coastal Zone of the Black Sea. Physical Oceanography, 28(4), pp. 414–425. https://doi.org/10.22449/1573-160X-2021-4-414-425
  20. Toloknov, Yu.N. and Korovushkin, A.I., 2010. The System of Collecting Hydrometeorological Information. In: MHI, 2010. Monitoring Systems of Environment. Sevastopol: ECOSI-Gidrofizika. Iss. 13, pp. 50–53 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relative error e(x) (a) and standard deviation d(x) (b) calculated for an ensemble of situations, the number of points N(x) from which statistical characteristics were calculated in a given interval Dx (c)

Download (66KB)
3. Fig. 2. Variables e(x) (a), d(x) (b), N(x) (c) calculated for four ranges m3: –0.2 < m3 £ 0 (blue), 0 < m3 £ 0.1 (red), 0.1 < m3 £ 0.2 (brown), 0.2 < m3 £ 0.3 (green)

Download (81KB)
4. Fig. 3. Variables e(x) (a), d(x) (b), N(x) (c) calculated for four ranges m4: 2.6 < m4 £ 2.8 (blue), 2.8 < m4 £ 3.0 (red), 3.0 < m4 £ 3.2 (brown), 3.2 < m4 £ 3.4 (green)

Download (77KB)

Copyright (c) 2024 Запевалов А.S., Князьков А.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».