Interpolating and extrapolating memoization in the Planning C language
- Authors: Pekunov V.V.1
-
Affiliations:
- Issue: No 3 (2025)
- Pages: 141-154
- Section: Articles
- URL: https://journal-vniispk.ru/2454-0714/article/view/359354
- DOI: https://doi.org/10.7256/2454-0714.2025.3.37869
- EDN: https://elibrary.ru/PICMLR
- ID: 359354
Cite item
Full Text
Abstract
References
Городняя Л.В. Парадигмы программирования. Часть 4. Параллельное программирование //Новосибирск. Препринт ИСИ СО РАН. – URL: http://www.iis.nsk.su/files/preprints/gorodnyaya_175.pdf (дата обращения: 05.11.2021). Mayfield, James, Timothy W. Finin and M. R. Hall. Using automatic memoization as a software engineering tool in real-world AI systems // Proceedings the 11th Conference on Artificial Intelligence for Applications (1995): pp.87-93. Perl 5.34.0 Documentation. URL: https://perldoc.perl.org/Memoize (дата обращения: 05.11.2021) Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and Andre Seznec. Intercepting functions for memoization: A case study using transcendental functions // ACM Trans. Architec. Code Optim. 12, 2, Article 18 (June 2015), 23 pages. DOI: http://dx.doi.org/10.1145/2751559 Y. Kamiya, T. Tsumura, H. Matsuo and Y. Nakashima. A Speculative Technique for Auto-Memoization Processor with Multithreading // Proc. International Conference on Parallel and Distributed Computing, Applications and Technologies, 2009, pp. 160-166, doi: 10.1109/PDCAT.2009.67. G. Zhang and D. Sanchez. Leveraging Hardware Caches for Memoization // IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 59-63, 1 Jan.-June 2018, doi: 10.1109/LCA.2017.2762308. M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction // Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 29, 1996, pp. 226-237, doi: 10.1109/MICRO.1996.566464. B. Calder, G. Reinman and D. M. Tullsen. Selective value prediction // Proceedings of the 26th International Symposium on Computer Architecture (Cat. No.99CB36367), 1999, pp. 64-74, doi: 10.1109/ISCA.1999.765940. Yiannakis Sazeides and James E. Smith. The predictability of data values // In Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture (MICRO 30). IEEE Computer Society, USA,1997, pp. 248-258. Evers, M., Yeh, T.Y. Understanding branches and designing branch predictors for high performance microprocessors // Proceedings of the IEEE 89, 1610-1620 (2001). Monchiero M., Palermo G. (2005) The Combined Perceptron Branch Predictor. // In: Cunha J.C., Medeiros P.D. (eds) Euro-Par 2005 Parallel Processing. Euro-Par 2005. Lecture Notes in Computer Science, vol 3648. Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/11549468_56 Salil Pant and Greg Byrd. A case for using value prediction to improve performance of transactional memory // In TRANSACT ’09: 4th Workshop on Transactional Computing, feb 2009. URL: http://transact09.cs.washington.edu/35_paper.pdf (дата обращения: 31.08.2020). Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceleration for generalpurpose approximate programs // In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). 449-460. DOI:http://dx.doi.org/10.1109/MICRO.2012.48. Пекунов В.В. Язык программирования Planning C. Инструментальные средства. Новые подходы к обучению нейронных сетей. – LAP LAMBERT Academic Publishing, 2017. – 171 с. Дюк, В., Самойленко, А. Data mining: учебный курс. СПб: Питер, 2001. Пекунов, В.В. Новые методы параллельного моделирования распространения загрязнений в окрестности промышленных и муниципальных объектов // Дис. докт. тех. наук. – Иваново, 2009. – 274 с.
Supplementary files

