Dynamic RACH-Slot Allocation for Collision Minimization in NB-IoT Networks Based on Reinforcement Learning Algorithms

Abstract

The subject of this research is the adaptive management of access to Random Access Channels (RACH) in Narrowband Internet of Things (NB-IoT) networks, which frequently face congestion due to high device density and limited channel capacity. The study focuses on the practical application of Reinforcement Learning algorithms, specifically Q-learning and Deep Q-Network (DQN), to address this issue. The authors thoroughly examine the problem of RACH overload and the resulting collisions that cause delays in data transmission and increased energy consumption in connected devices. The article analyzes the limitations and inefficiency of traditional static slot allocation methods and justifies the necessity of implementing a dynamic, learning-based approach capable of adapting to constantly changing network conditions. The research aims to significantly minimize collision rates, improve connection success rates, and reduce the overall energy consumption of NB-IoT devices. The research methodology involved the use of advanced machine learning methods, including Q-learning and DQN, together with simulation modeling conducted in the NS-3 environment, integrating a dedicated RL-agent for dynamic and intelligent RACH slot allocation. The main conclusions of the study highlight the demonstrated effectiveness of the adaptive RL-based approach for optimizing access to communication slots in NB-IoT networks. The scientific novelty lies in the development and integration of a specialized RL-agent capable of dynamically managing slot distribution based on real-time network conditions. As a result of implementing the proposed approach, the number of collisions was reduced by 74%, the number of successful connections increased by 16%, and the energy efficiency of the devices improved by 15% in comparison with traditional static methods. These results clearly demonstrate the practical applicability, and scalability of adaptive RL-based management techniques for enhancing both the performance and reliability of real-world NB-IoT networks.

References

  1. Liu Y., Deng Y., Jiang N. [и др.]. Analysis of Random Access in NB-IoT Networks With Three Coverage Enhancement Groups: A Stochastic Geometry Approach // IEEE Transactions on Wireless Communications. – 2021. – Т. 20, № 1. – С. 549-563. doi: 10.1109/twc.2020.3026331. EDN: WLBLVU.
  2. Jia G., Zhu Y., Li Y., Zhu Z. Analysis of the Effect of the Reliability of the NB-IoT Network on the Intelligent System // Special Section on Innovation and Application of Internet of Things and Emerging Technologies in Smart Sensing. – 2019. – № 7. – С. 112809-112820.
  3. Sahithya R., Pouria Z., Mohieddine E. S., Majid N. Evaluation, Modeling and Optimization of Coverage Enhancement Methods of NB-IoT // Electrical Engineering Department. – 2019. – № 1. – С. 1-17.
  4. Chougrani H., Kisseleff S., Martins W. A., Chatzinotas S. NB-IoT Random Access for Nonterrestrial Networks: Preamble Detection and Uplink Synchronization // IEEE Internet of Things Journal. – 2022. – Т. 9, № 16. – С. 14913-14927. doi: 10.1109/jiot.2021.3123376. EDN: RVWLFC.
  5. Agiwal M., Kumar M. M., Jin H. Power Efficient Random Access for Massive NB-IoT Connectivity // Sensors. – 2019. – № 19. – С. 1-24.
  6. Jiang N., Deng Y., Nallanathan A. Deep Reinforcement Learning for Real-Time Optimization in NB-IoT Networks // School of Electronic Engineering and Computer Science. – 2018. – № 1. – С. 1-31.
  7. Alcaraz J., Losilla F., Gonzalez-Castaño F.-J. Transmission Control in NB-IoT With Model-Based Reinforcement Learning // IEEE Access. – 2023. – № 11. – С. 57991-58005. doi: 10.1109/access.2023.3284990. EDN: KTFAKS.
  8. Anbazhagan S., Mugelan R.K. Next-Gen Resource Optimization in NB-IoT Networks: Harnessing Soft Actor-Critic Reinforcement Learning // Computer Networks. – 2024. – № 252. – С. 110670-110684. doi: 10.1016/j.comnet.2024.110670. EDN: XHDOCK.
  9. Шорин О.А., Асланян В.А. Подходы к интеграции технологии NB-IoT с сетью 5G // Экономика и качество систем связи. – 2024. – № 3. – С. 56-62. EDN: CXRPPW.
  10. Намиот Д.Е., Ильюшин Е.А. Архитектура LLM агентов // International Journal of Open Information Technologies. – 2025. – Т. 13, № 1. – С. 2307-8162.
  11. Исаева О.С. Построение цифрового профиля устройств Интернета вещей // Информационные и математические технологии в науке и управлении. – 2023. – Т. 30, № 2. – С. 36-44. doi: 10.25729/ESI.2023.30.2.004. EDN: EFPGJP.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».