Comparison of automatic summarization of texts in Russian

详细

The subject of the research in this article is the generalization of texts in Russian using artificial intelligence models. In particular, the authors compare the popular models GigaChat, YaGPT2, ChatGPT-3.5, ChatGPT-4, Bard, Bing AI and YouChat and conduct a comparative study of their work on Russian texts. The article uses datasets for the Russian language, such as Gazeta, XL-Sum and WikiLingua, as source materials for subsequent generalization, as well as additional datasets in English, CNN Dailymail and XSum, were taken to compare the effectiveness of generalization. The article uses the following indicators: ROUGE, BLEU score, BERTScore, METEOR and BLEURT to assess the quality of text synthesis. In this article, a comparative analysis of data obtained during automatic generalization using artificial intelligence models is used as a research method. The scientific novelty of the research is to conduct a comparative analysis of the quality of automatic generalization of texts in Russian and English using various neural network models of natural language processing. The authors of the study drew attention to the new models GigaChat, YaGPT2, ChatGPT-3.5, ChatGPT-4, Bard, Bing AI and YouChat, considering and analyzing their effectiveness in the task of text generalization. The results of the generalization in Russian show that YouChat demonstrates the highest results in terms of the set of ratings, emphasizing the effectiveness of the model in processing and generating text with a more accurate reproduction of key elements of content. Unlike YouChat, the Bard model showed the worst results, representing the model with the least ability to generate coherent and relevant text. The data obtained during the comparison will contribute to a deeper understanding of the models under consideration, helping to make a choice when using artificial intelligence for text summarization tasks as a basis for future developments.

参考

  1. Goyal T., Li J. J., Durrett G. News summarization and evaluation in the era of gpt-3 //arXiv preprint arXiv:2209.12356. – 2022.
  2. Zhang T. et al. Benchmarking large language models for news summarization //arXiv preprint arXiv:2301.13848. – 2023.
  3. Gusev I. Dataset for automatic summarization of Russian news //Artificial Intelligence and Natural Language: 9th Conference, AINL 2020, Helsinki, Finland, October 7–9, 2020, Proceedings 9. – Springer International Publishing, 2020. – С. 122-134.
  4. Lin C. Y. Rouge: A package for automatic evaluation of summaries //Text summarization branches out. – 2004. – С. 74-81.
  5. Post M. A call for clarity in reporting BLEU scores //arXiv preprint arXiv:1804.08771. – 2018.
  6. Bhaskar A., Fabbri A., Durrett G. Prompted opinion summarization with GPT-3.5 //Findings of the Association for Computational Linguistics: ACL 2023. – 2023. – С. 9282-9300.
  7. Tang L. et al. Evaluating large language models on medical evidence summarization //npj Digital Medicine. – 2023. – Т. 6. – №. 1. – С. 158.
  8. Hendy A. et al. How good are gpt models at machine translation? a comprehensive evaluation //arXiv preprint arXiv:2302.09210. – 2023.
  9. Jiao W. et al. Is ChatGPT a good translator? Yes with GPT-4 as the engine //arXiv preprint arXiv:2301.08745. – 2023.
  10. Narayan S., Cohen S. B., Lapata M. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization //arXiv preprint arXiv:1808.08745. – 2018.
  11. Nallapati R. et al. Abstractive text summarization using sequence-to-sequence rnns and beyond //arXiv preprint arXiv:1602.06023. – 2016.
  12. Hasan T. et al. XL-sum: Large-scale multilingual abstractive summarization for 44 languages //arXiv preprint arXiv:2106.13822. – 2021.
  13. Zhang T. et al. Bertscore: Evaluating text generation with bert //arXiv preprint arXiv:1904.09675. – 2019.
  14. Banerjee S., Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments //Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. – 2005. – С. 65-72.
  15. Sellam T., Das D., Parikh A. P. BLEURT: Learning robust metrics for text generation //arXiv preprint arXiv:2004.04696. – 2020.
  16. Ladhak F. et al. WikiLingua: A new benchmark dataset for cross-lingual abstractive summarization //arXiv preprint arXiv:2010.03093. – 2020.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».