Comparison of automatic summarization of texts in Russian
- 作者: Dagaev A.E.1, Popov D.I.1
-
隶属关系:
- 期: 编号 4 (2024)
- 页面: 13-22
- 栏目: Articles
- URL: https://journal-vniispk.ru/2454-0714/article/view/359391
- DOI: https://doi.org/10.7256/2454-0714.2024.4.69474
- EDN: https://elibrary.ru/CSFMFC
- ID: 359391
如何引用文章
全文:
详细
参考
Goyal T., Li J. J., Durrett G. News summarization and evaluation in the era of gpt-3 //arXiv preprint arXiv:2209.12356. – 2022. Zhang T. et al. Benchmarking large language models for news summarization //arXiv preprint arXiv:2301.13848. – 2023. Gusev I. Dataset for automatic summarization of Russian news //Artificial Intelligence and Natural Language: 9th Conference, AINL 2020, Helsinki, Finland, October 7–9, 2020, Proceedings 9. – Springer International Publishing, 2020. – С. 122-134. Lin C. Y. Rouge: A package for automatic evaluation of summaries //Text summarization branches out. – 2004. – С. 74-81. Post M. A call for clarity in reporting BLEU scores //arXiv preprint arXiv:1804.08771. – 2018. Bhaskar A., Fabbri A., Durrett G. Prompted opinion summarization with GPT-3.5 //Findings of the Association for Computational Linguistics: ACL 2023. – 2023. – С. 9282-9300. Tang L. et al. Evaluating large language models on medical evidence summarization //npj Digital Medicine. – 2023. – Т. 6. – №. 1. – С. 158. Hendy A. et al. How good are gpt models at machine translation? a comprehensive evaluation //arXiv preprint arXiv:2302.09210. – 2023. Jiao W. et al. Is ChatGPT a good translator? Yes with GPT-4 as the engine //arXiv preprint arXiv:2301.08745. – 2023. Narayan S., Cohen S. B., Lapata M. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization //arXiv preprint arXiv:1808.08745. – 2018. Nallapati R. et al. Abstractive text summarization using sequence-to-sequence rnns and beyond //arXiv preprint arXiv:1602.06023. – 2016. Hasan T. et al. XL-sum: Large-scale multilingual abstractive summarization for 44 languages //arXiv preprint arXiv:2106.13822. – 2021. Zhang T. et al. Bertscore: Evaluating text generation with bert //arXiv preprint arXiv:1904.09675. – 2019. Banerjee S., Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments //Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. – 2005. – С. 65-72. Sellam T., Das D., Parikh A. P. BLEURT: Learning robust metrics for text generation //arXiv preprint arXiv:2004.04696. – 2020. Ladhak F. et al. WikiLingua: A new benchmark dataset for cross-lingual abstractive summarization //arXiv preprint arXiv:2010.03093. – 2020.
补充文件
