A method for detecting objects in images based on neural networks on graphs and a small number of training examples
- Authors: Zakharov A.A.1
-
Affiliations:
- Issue: No 4 (2024)
- Pages: 66-75
- Section: Articles
- URL: https://journal-vniispk.ru/2454-0714/article/view/359394
- DOI: https://doi.org/10.7256/2454-0714.2024.4.72558
- EDN: https://elibrary.ru/UTTFCH
- ID: 359394
Cite item
Full Text
Abstract
References
Zou Z., Chen K., Shi Z., Guo Y., Ye J. Object Detection in 20 Years: A Survey // Proceedings of the IEEE. 2023. Vol. 111 (3). Pp. 257-276. Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection // IEEE Conference on Computer Vision and Pattern Recognition. 2016. Pp. 779-788. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.Y., Berg A. C. Ssd: Single shot multibox detector // European Conference on Computer Vision. 2016. Pp. 21-37. Lin T.Y., Goyal P., Girshick R., He K., Dollar P. Focal loss for dense object detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018. Vol. 42(2). Pp. 318-327. Girshick P. Fast R-CNN // 2015 IEEE International Conference on Computer Vision (ICCV). 2015. Pp. 1440-1448. Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks // Advances in Neural Information Processing System. 2015. Pp. 91-99. He K., Gkioxari G., Dollar P., Girshick R. Mask R-CNN // Proceedings of the IEEE International Conference on Computer Vision. 2017. Pp. 2961-2969. Köhler M., Eisenbach M., Gross H. M. Few-Shot Object Detection: A Survey // IEEE Transactions on Neural Networks and Learning Systems. 2024. Vol. 35 (9). Pp. 11958-11978. Huang G., Laradji I., Vazquez D., Lacoste-Julien S., Rodriguez P. A Survey of Self-Supervised and Few-Shot Object Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023. Vol. 45(4). Pp. 4071-4089. Wu J., Liu S., Huang D., Wang Y. Multi-scale positive sample refnement for few-shot object detection // European Conference on Computer Vision. 2020. Pp. 456-472. Wang X., Huang T. E., Gonzalez J., Darrell T., Yu F. Frustratingly simple few-shot object detection // Proceedings of the 37th International Conference on Machine Learning (ICML). 2020. Pp. 9919-9928. Kang B., Liu Z., Wang X., Yu F., Feng J., Darrell T. Few-shot object detection via feature reweighting // 2019 IEEE/CVF International Conference on Computer Vision. 2019. Захаров А.А., Тужилкин А.Ю. Сегментация спутниковых изображений на основе суперпикселей и разрезов на графах // Программные системы и вычислительные методы. 2018. № 1. С. 7-17. doi: 10.7256/2454-0714.2018.1.25629 URL: https://e-notabene.ru/itmag/article_25629.html Захаров. А.А., Титов Д.В., Жизняков А.Л., Титов В.С. Метод визуального внимания на основе ранжирования вершин графа по разнородным признакам изображений // Компьютерная оптика. 2020. Т. 44, № 3. С. 427-435. Barinov A.E., Zakharov A.A. Clustering using a random walk on graph for head pose estimation // International Conference on Mechanical Engineering, Automation and Control Systems, MEACS. 2015. Cao P., Zhu Z., Wang Z., Zhu Y., Niu Q. Applications of graph convolutional networks in computer vision // Neural Computing and Applications. 2022. № 34. Pp. 13387-13405. Kipf T.N. Deep Learning with Graph-Structured Representations, Universiteit van Amsterdam, 2020. Li W., Liu X., Yuan Y. SIGMA++: Improved Semantic-Complete Graph Matching for Domain Adaptive Object Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023. Vol. 45 (7). Pp. 9022-9040. Chen C., Li J., Zhou H.Y., Han X., Huang Y., Ding X., Yu Y. Relation matters: Foreground-aware graph-based relational reasoning for domain adaptive object detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023. Vol. 45 (3). Pp. 3677-3694. Chen T., Lin L., Chen R., Hui X., Wu X. Knowledge-Guided Multi-Label Few-Shot Learning for General Image Recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. Vol. 44 (3). Pp.1371-1384. Liu Z., Jiang Z., Feng W., Feng H. OD-GCN: Object Detection Boosted by Knowledge GCN // 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). 2020.
Supplementary files

