Investigation of stochastic models of packet generation in computer networks

Cover Page

Cite item

Full Text

Abstract

Stochastic packet generation models are models that are used to generate traffic in computer networks with certain characteristics. These models can be used to simulate network activity and test network performance. Standard data transmission on the network is packet generation with delays, in which packets are sent at certain intervals. Various stochastic models can be used to generate delayed packets, including uniform distribution, exponential distribution, and Erlang distribution. In this work, an experimental setup was assembled and a client-server application was developed to conduct research and analyze the performance of the data transmission channel. An algorithm has been proposed that allows to restore the moment characteristics of a random value of the interval between packets for further use of queuing models. The analysis of the distribution laws on the performance of the experimental network sample was performed and estimates of the efficiency of channel use and the average packet generation time in network segments, as well as histograms of delays according to the distribution laws, were obtained. An experimental setup was created, and a client-server application was developed to analyze the performance of the data transmission channel. An algorithm for restoring the moment characteristics of the time intervals between packets is proposed. The analysis of the distribution laws on network performance was carried out, estimates of the efficiency of channel use and the average packet generation time in network segments were obtained, as well as histograms of delays according to the distribution laws. The generation of packets with delays according to stochastic distribution laws (uniform, exponential, Erlang) is of great importance in modeling and analyzing the operation of network systems. Also, the generation of packets with delays according to the above-mentioned distribution laws allows testing and debugging of network applications and devices in conditions close to real ones. This allows to identify possible problems and improve the operation of network systems. As a result of the experiment, an algorithm was proposed that allows to restore the moment characteristics of a random value of the interval between packets for further use of queuing models. Also, the analysis of the influence of distribution laws on the performance of the experimental network sample was performed and estimates of the efficiency of channel use and the average packet generation time in network segments, as well as histograms of delays according to distribution laws, were obtained.

References

  1. Жукова Г.Н. Карта коэффициентов асимметрии и эксцесса в преподавании теории вероятностей и математической статистики// Концепт 2015. №8. С. 1-4.
  2. Дмитриев Е.И., Медведев А.В. P-генератор случайных чисел, распределенных по экспоненциальному закону// Актуальные проблемы авиации и космонавтики 2011. №7. Том 1. С. 316-317.
  3. Распределение Эрланга URL: http://algolist.ru/maths/matstat/erlang/index.php#:~:text=%D0%A0%BC. (Дата обращения 06.03.2023).
  4. Как пользоваться Wireshark для анализа трафика. URL: https://losst.pro/kak-polzovatsya-wireshark-dlya-analiza-trafika (Дата обращения 06.03.2023).
  5. Приложение для генерации пакетов в компьютерных сетях с помощью стохастических моделей распределения. URL: https://elibrary.ru/item.asp?id=50133060
  6. Тарасов В.Н., Бахарева Н.Ф., Горелов Г.А., Малахов С.В. Анализ входящего трафика на уровне трех моментов распределений временных интервалов// Информационные технологии 2014. №9. С. 54-59.
  7. Эмуляция влияния глобальных сетей. URL: https://habr.com/ru/articles/24046/ (Дата обращения 10.05.2023).
  8. Руководство по настройке производительности. URL: http://www.regatta.cs. msu.su/doc/usr/share/man/info/ru_RU/a_doc_lib/aixbman/prftungd/2365c91.htm (Дата обращения 10.05.2023).
  9. Алгоритмы сети Ethernet/Fast Ethernet. URL: https://intuit.ru/studies/professional_retraining/943/courses/57/lecture/1690?page=2 (Дата обращения 10.05.2023).
  10. Снабжение пакетов данных точными временными метками в системах сетевого мониторинга. URL: http://www.treatface.ru/solutions/sistemy-setevogo-monitoringa/snabzhenie-paketov-dannykh-tochnymi-vremennymi-metkami-v-sistemakh-setevogo-monitoringa (Дата обращения 10.05.2023)

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».