Development of an automated system for testing a cloud service for deploying virtual machines using modern monitoring tools

Abstract

The object of this study is a service for managing virtual machines in a cloud environment. When developing and operating such a service, it becomes necessary to assess its availability and reliability for compliance with the selected quality level that the client can count on. This paper presents a developed system that allows testing the availability of a cloud service for managing virtual machines. The method of integration with the existing monitoring system at the enterprise using open source software in order to reduce the cost of development and operation is considered. A test case for deploying and removing a virtual machine using a graphical user interface has been developed and implemented, and triggering criteria have been defined. The requirements for the architecture and implementation of the system based on the production statistics of the virtual machine creation service using the Prometheus monitoring system are collected and analyzed. The novelty of the research lies in the development of a new method of testing a cloud service for managing virtual machines in order to increase its reliability and availability. Based on this method, a system for testing virtual machines is described and implemented, as well as a method for integration into the monitoring system of the Intel cloud service. During the operation of cloud environments with the help of this system, problem areas were identified in the architecture of the virtual machine creation service, which made it possible to optimize the system operation in a timely manner. The described method is an effective way to test cloud services, and can also be used to analyze and improve reliability and availability.

References

  1. Prometheus – Monitoring system & time series database [Электронный ресурс]. URL: https://prometheus.io/docs/introduction/overview/ (дата обращения 04.04.2023).
  2. Официальный Интернет-сайт Intel [Электронный ресурс]. URL: https://www.intel.com/ (дата обращения 04.04.2023).
  3. The selenium browser automation project [Электронный ресурс]. URL: https://www.selenium.dev/documentation/ (дата обращения 04.04.2023).
  4. Щемелинин Д.А. Математические модели и методы мониторинга и прогнозирования состояния глобально распределенных вычислительных комплексов. Труды учебных заведений связи. 2021. Т. 7. № 3. С. 73–78.
  5. Щемелинин Д.А. Метод прогнозирования событий в глобально распределенных вычислительных комплексах. Современная наука: актуальные проблемы теории и практики. Серия: Естественные технические науки. 2021. № 12–2. С. 47–54.
  6. Щемелинин Д.А. Метод и алгоритм автоматического восстановления информационных сервисов на основе объективных прогностических данных мониторинга. Современная наука: актуальные проблемы теории и практики. Серия: Естественные технические науки. 2021. № 8. С. 140–144.
  7. Selenium with python [Электронный ресурс] URL: https://selenium-python.readthedocs.io/ (дата обращения 04.04.2023).
  8. The TIOBE Programming Community index an indicator of the popularity of programming languages [Электронный ресурс] URL: https://www.tiobe.com/tiobe-index/ (дата обращения 04.04.2023).
  9. Sujay Raghavendra. – Python testing with selenium – Apress Berkeley CA, 2020 – 4 c. ISBN 978-1-4842-6249-8
  10. When to use selenium grid [Электронный ресурс] URL: https://www.selenium.dev/documentation/grid/applicability/ (дата обращения 04.04.2023)
  11. Grafana documentation [Электронный ресурс]. URL: https://grafana.com/docs/grafana/latest/ (дата обращения 04.04.2023)
  12. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, Vol.2, No. I, 21-33, 2011. URL: https://www.nrc.gov/docs/ML1714/ML17143A100.pdf (дата обращения 04.04.2023)
  13. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. URL: https://www.sciencedirect.com/science/article/pii/S0022103113000668 (дата обращения 04.04.2023)
  14. Щемелинин Д.А. Система критериев и алгоритм обработки информации и принятия решений для программного модуля отображения наиболее значимых событий мониторинга в информационной системе. XXI век: итоги прошлого и проблемы настоящего плюс 2021. Т. 10. № 3 (55). С. 67–71.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».