Varietal features of soybean photoluminescence
- 作者: Belyakov M.V.1, Lysenkova A.A.2
-
隶属关系:
- FSBSI FSAC VIM
- Plekhanov Russian State University of Economics
- 期: 编号 2 (2025)
- 页面: 12-16
- 栏目: Crop Production and Selection
- URL: https://journal-vniispk.ru/2500-2082/article/view/293732
- DOI: https://doi.org/10.31857/S2500208225020032
- EDN: https://elibrary.ru/HTYVHD
- ID: 293732
如何引用文章
详细
Identification of seed varieties is necessary to ensure the purity and yield of the variety. In this paper, the possibilities of determining the varietal characteristics of the photoluminescence of soybean seeds for the subsequent creation of a methodology for its varietal identification are investigated. Seeds of early and medium-early soybean varieties were taken for research. The spectral characteristics of excitation and photoluminescent radiation were measured using a CM2203 diffraction spectrofluorimeter with specialized software. The integral parameters (absorption capacity and luminescence flux) and the Stokes shift were calculated. Seed excitation occurs in the range of about 300-500nm with the main maxima at 365nm and 424nm and a small side 520nm. The difference in the integral absorption capacity by grades is up to 2.31 times, and in some ranges up to 2.66 times. The use of absorption ratios for varietal identification as relative values independent of the level of the photo signal is more preferable, but the varietal differences Ηλ1/Ηλ2 are only 1.5-1.6 times. Photoluminescence fluxes differ by 1.56 times for different varieties, which will also make it possible to distinguish the seeds of some varieties. The Stokes shift for the studied varieties differs slightly and cannot be a parameter for seed identification. It was found that the luminescent characteristics of the studied soybean varieties have noticeable quantitative differences, but less significant qualitative ones related to the ratio of excitation maxima. It is possible to identify soybean seed varieties by their luminescent properties by the magnitude of the photoluminescence flux when excited by 424nm radiation, while it is advisable to use a difference in quantitative parameters. The value of the ratio of the integral absorption abilities when excited by radiation of 424nm and 365nm, respectively, can be used. Determination of the soybean seed variety by luminescent properties will speed up the identification process and significantly reduce time and material costs.
全文:

作者简介
Mikhail Belyakov
FSBSI FSAC VIM
编辑信件的主要联系方式.
Email: bmw20100@mail.ru
Grand PhD in Engineering Sciences, Chief Researcher
俄罗斯联邦, MoscowAnna Lysenkova
Plekhanov Russian State University of Economics
Email: bmw20100@mail.ru
PhD Student
俄罗斯联邦, Moscow参考
- Belyakov M.V. Lyuminescentnyj metod i optiko-elektronnye ustrojstva ekspress-diagnostiki kachestva semyan agrokul’tur: special’nost’ 05.20.02 “Elektrotekhnologii i elektrooborudovanie v sel’skom hozyajstve”: dissertaciya na soiskanie uchenoj stepeni doktora tekhnicheskih nauk Smolensk, 2021. 438 s.
- Klimenkov F.I., Klimenkova I.N., Ivanova L.P. i dr. Laboratornyj sortovoj kontrol’ v praktike pervichnoj selekcii i semenovodstva, identifikacii i sortovoj chistoty semyan zernovyh kul’tur // Agrarnaya Rossiya. 2023. № 12. S. 23–28. https://doi.org/10.30906/1999-5636-2023-12-23-28
- Lobachevskij Ya.P., Dorohov A.S. Cifrovye tekhnologii i robotizirovannye tekhnicheskie sredstva dlya sel’skogo hozyajstva // Sel’skohozyajstvennye mashiny i tekhnologii. 2021. T. 15. № 4. S. 6–10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10
- Smolikova G.N., Shavarda A.L., Aleksejchuk I.V. i dr. Metabolomnyj podhod k ocenke sortovoj specifichnosti semyan Brassica napus L. // Vavilovskij zhurnal genetiki i selekcii. 2015. № 19(1). S. 121–127. https://doi.org/10.18699/VJ15.015
- Torikov V.E., Shpilev N.S., Klimenkov F.I. Ispol’zovanie elektroforeticheskih metodov dlya identifikacii sortov zernovyh kul’tur // Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2019. № 2(172). S. 5–12.
- Shazzo A.A., Kornena E.P., Kabalina E.V. Ekspress-sposob identifikacii sovremennyh sortov i gibridov semyan podsolnechnika na osnove spektral’nogo analiza kontura izobrazheniya // Izvestiya vysshih uchebnyh zavedenij. Pishchevaya tekhnologiya. 2009. № 1(307). S. 111–112.
- Bu Y., Jiang X., Tian J. et al. Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network // J Sci Food Agric. 2023. Vol. 103. PP. 3970–3983. https://doi.org/10.1002/jsfa.12344
- Fu L., Sun J., Wang S. et al. Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology // Journal of Food Process Engineering. 2022. Vol. 45. No. 9. e14120. https://doi.org/10.1111/jfpe.14120
- Li H., Zhang L., Sun H., et al. Identification of soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network // Journal of Food Process Engineering. 2021. Vol. 44. No. 8. e13767. https://doi.org/10.1111/jfpe.13767
- Singh T., Garg N.M., Iyengar S. R. S. Nondestructive identification of barley seeds variety using near-infrared hyperspectral imaging coupled with convolutional neural network // Journal of Food Process Engineering. 2021. Vol. 44. No. 10. e13821. https://doi.org/10.1111/jfpe.13821
- Sun J., Zhang L., Zhou X. et al. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology // Journal of Food Process Engineering. 2021. Vol. 44. No. 9. e13797. https://doi.org/10.1111/jfpe.13797
- Wang Y., Song S. Variety identification of sweet maize seeds based on hyperspectral imaging combined with deep learning // Infrared Physics & Technology. 2023. Vol. 130. 104611. https://doi.org/10.1016/j.infrared.2023.104611
- Zhao X., Que H., Sun X. et al. Hybrid convolutional network based on hyperspectral imaging for wheat seed varieties classification // Infrared Physics & Technology. 2022. Vol. 125. 104270. https://doi.org/10.1016/j.infrared.2022.104270
- Zhou Q., Huang W., Tian X., et al. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting // J Sci Food Agric, 2021. Vol. 101. PP. 4532–4542. https://doi.org/10.1002/jsfa.11095
补充文件
