Growth rate dependence on micronutrient provision in replacement heifers during the intrauterine period
- Authors: Safonov V.A.1, Ermilova T.E.1, Chernitskiy A.E.2
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
- Ural Federal Agrarian Scientific Research Center, Ural Branch of the Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 59-62
- Section: Articles
- URL: https://journal-vniispk.ru/2500-2627/article/view/233881
- DOI: https://doi.org/10.31857/S2500262723060121
- EDN: https://elibrary.ru/NIISGG
- ID: 233881
Cite item
Abstract
Keywords
About the authors
V. A. Safonov
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: safrus2003@mail.ru
119991, Moskva, ul. Kosygina, 19
T. E. Ermilova
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences119991, Moskva, ul. Kosygina, 19
A. E. Chernitskiy
Ural Federal Agrarian Scientific Research Center, Ural Branch of the Russian Academy of Sciences
Email: cherae@mail.ru
620142, Yekaterinburg, ul. Belinskogo, 112a
References
- Fukuoka H. DOHaD (developmental origins of health and disease) and birth cohort research // J. Nutr. Sci. Vitaminol. 2015. Vol. 61. P. S2-S4. doi: 10.3177/jnsv.61.S2.
- Greenwood P. L., Bell A. W. Developmental programming and growth of livestock tissues for meat production // Vet. Clin. North Am. Food Anim. Pract. 2019. Vol. 35. No. 2. P. 303-319. doi: 10.1016/j.cvfa.2019.02.008.
- Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health // Animals. 2020. Vol. 10. No. 12. 2404. URL: https://www.mdpi.com/2076-2615/10/12/2404 (дата обращения: 02.09.2023). doi: 10.3390/ani10122404.
- Robinson J. J., Sinclair K. D., McEvoy T. G. Nutritional effects on foetal growth. Anim. Sci. 1999. Vol. 68. No. 2. P. 315-331. doi: 10.1017/S1357729800050323.
- Maternal mineral nutrition regulates fetal genomic programming in cattle: a review / M. Anas, W. J. Diniz, A. C. Menezes, et al. // Metabolites. 2023. Vol. 13. No. 5. 593. URL: https://www.mdpi.com/2218-1989/13/5/593 (дата обращения: 02.09.2023). doi: 10.3390/metabo13050593.
- Patel M. S., Srinivasan M. Metabolic programming in the immediate postnatal life // Ann. Nutr. Metab. 2011. Vol. 58. No. 2. P. 18-28. doi: 10.1159/000328040.
- Wu G., Imhoff-Kunsch B., Girard A. W. Biological mechanisms for nutritional regulation of maternal health and fetal development // Paediatr. Perinat. Epidemiol. 2012. Vol. 26. No. 1. P. 4-26. doi: 10.1111/j.1365-3016.2012.01291.x.
- Board-invited review: Intrauterine growth retardation: implications for the animal sciences / G. Wu, F. W. Bazer, J. M. Wallace, et al. // J. Anim. Sci. 2006. Vol. 84. No. 9. P. 2316-2337. doi: 10.2527/jas.2006-156.
- Programming of embryonic development / C. R. Dahlen, P. P. Borowicz, A. K. Ward, et al. // Int. J. Mol. Sci. 2021. Vol. 22. No. 21. 11668. URL: https://www.mdpi.com/1422-0067/22/21/11668 (дата обращения: 02.09.2023). doi: 10.3390/ijms222111668.
- Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis / E. Kalaeva, V. Kalaev, A. Chernitskiy, et al. // Vet. World. 2020. Vol. 13. No. 5. P. 987-995. doi: 10.14202/vetworld.2020.987-995.
- Diselementosis as a risk factor of embryo loss in lactating cows / S. Shabunin, A. Nezhdanov, V. Mikhalev, et al. // Turk. J. Vet. Anim. Sci. 2017. Vol. 41. No. 4. P. 453-459. doi: 10.3906/vet-1609-76.
- Safonov V. A., Mikhalev V. I., Chernitskiy A. E. Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation // Agricultural Biology. 2018. Vol. 53. No. 4. P. 831-841. doi: 10.15389/agrobiology.2018.4.831eng.
- Growth-and breed-related changes of fetal development in cattle / W. H. Mao, E. Albrecht, F. Teuscher, et al. // Asian-Aust. J. Anim. Sci. 2008. Vol. 21. No. 5. P. 640-647.
- Goff J. P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status // J. Dairy Sci. 2018. Vol. 101. No. 4. P. 2763-2813. doi: 10.3168/jds.2017-13112.
- Скрининг элементного состава волос у новорожденных телят как способ диагностики внутриутробного дисэлементоза / В. А. Сафонов, Т. С. Ермилова, Э. А. О. Салимзаде и др. // Ветеринария и кормление. 2022. № 5. С. 48-50. doi: 10.30917/ATT-VK-1814-9588-2022-5-14.
- Suttle N. F. Mineral nutrition of livestock. 5th ed. Boston: CABI, 2022. 600 p.
- The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus) / S. A. Miroshnikov, O. A. Zavyalov, A. N. Frolov, et al. // Biol. Trace Elem. Res. 2017. Vol. 180. No. 1. P. 56-62. doi: 10.1007/s12011-017-0991-5.
- Glover I. D., Barrett D. C., Reyher K. K. Little association between birth weight and health of preweaned dairy calves // Vet. Rec. 2019. Vol. 184. No. 15. 477. URL: https://bvajournals.onlinelibrary.wiley.com/doi/10.1136/vr.105062 (дата обращения: 02.09.2023). doi: 10.1136/vr.105062.
- Билан Е. А., Дерхо М. А. Масса тела как индикатор морфобиохимического состава крови телок в условиях интенсивной технологии выращивания // Генетика и разведение животных. 2022. № 2. С. 76-82. doi: 10. 31043/2410-2733-2022-2-75-82.
- Influence of copper on early development: prenatal and postnatal considerations / J. Y. Uriu-Adams, R. E. Scherr, L. Lanoue, et al. // Biofactors. 2010. Vol. 36. No. 2. P. 136-152. doi: 10.1002/biof.85.
- Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions / M. L. Ojeda, F. Nogales, I. Romero-Herrera, et al. // Nutrients. 2021. Vol. 13. No. 6. 2085. URL: https://www.mdpi.com/2072-6643/13/6/2085 (дата обращения: 02.09.2023). doi: 10.3390/nu13062085.
Supplementary files
