Influence of grazing intensity on organic carbon deposition in pasture soil
- Authors: Boitsova L.V.1, Neprimerova S.V.1
-
Affiliations:
- Agrophysical Research Institute
- Issue: No 1 (2024)
- Pages: 41-46
- Section: Agro-soil science and agroecology
- URL: https://journal-vniispk.ru/2500-2627/article/view/255729
- DOI: https://doi.org/10.31857/S2500262724010085
- EDN: https://elibrary.ru/CSLSPX
- ID: 255729
Cite item
Abstract
The study was conducted to study the effect of cattle grazing intensity on the deposition of organic carbon (Corg) in pasture soil. The work was carried out in 2010 on soddy-medium podzolic sandy loam soil in the Leningrad region. Three pasture areas were identified according to grazing intensity: weak (section 1), medium (section 2), strong (section 3). Corg and carbon in the clay fraction of the soil (Cclay) were determined according to the method of I. V. Tyurin. The sludge fraction (<1 µm) was isolated using sedimentation and centrifugation. X-ray analysis of soil minerals was carried out in samples of the clay fraction of the soil on a DRON-3M diffractometer, Cu Kα tube mode 30 mA, 30 kV, from 3.5 to 75°, goniometer rotation speed 1° per minute. The soil of site 3 was distinguished by the minimum content of Corg in both periods of the survey (May – 16 C g/kg of soil; July – 27.8 C g/kg). The Corg value in the July samples was 1.3 times less compared to site 2 and 1.2 times less than site 1. Cclay values varied in the range: in May 40.8…108.9 C g/kg fractions, in July 99.7…140.9 C g/kg fraction. The content of Cclay in July samples from site 3 was 1.3 times higher than the content in samples from site 2 and 1.4 times from site 1. The variation in the enrichment coefficient (Esoc) was 1.78…3.50 in May, 2 in July .89…5.07. The highest Esoc was recorded for the soil of site 3 in July; its values exceeded the values in sites 1 and 2 by 1.75 times. The mineral depositing organic matter in the clay fraction of the soil of the site with high grazing intensity was mica with a deficiency of cations (r = 0.90). The increase in grazing intensity led to an increase in the content of Cclay.
Keywords
Full Text

About the authors
L. V. Boitsova
Agrophysical Research Institute
Author for correspondence.
Email: larisa30.05@mail.ru
Russian Federation, 195220, Sankt-Peterburg, Grazhdanskiy prosp., 14
S. V. Neprimerova
Agrophysical Research Institute
Email: larisa30.05@mail.ru
Russian Federation, 195220, Sankt-Peterburg, Grazhdanskiy prosp., 14
References
- Laban P., Metternicht G., Davies J. Soil Biodiversity and Soil Organic Carbon: keeping dry land salive. Gland, Switzerland: IUCN, 2018. 24 p. URL: https://portals.iucn.org/library/sites/library/files/documents/2018–004-En.pdf (дата обращения: 22.09. 2023). doi: 10.2305/IUCN.CH.2018.03.en.
- Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau / J. Chen, X. Zhou, J. Wang, et al. // Ecology and Evolution. 2016. Vol. 6. No. 3. P. 629–870. doi: 10.1002/ece3.1867.
- Запасы углерода в типичной степи при различном управлении выпасом / Сарула, Х. Чэнь, С. Хоу, и др. // Почвоведение. 2014. № 11. С. 1365–1374. doi: 10.7868/S0032180X14110100.
- Wade C., Sonnier G., Boughton E. H. Does Grazing Affect Soil Carbon in Subtropical Humid Seminatural Grasslands? // Rangeland Ecology & Management. 2022. Vol. 80. P. 10–17. doi: 10.1016/j.rama.2021.09.004.
- Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan Plateau: a synthesis / X. K. Lu, C. Kelsey, Y. Yan, et al. // Ecosphere. 2017. Vol. 8 (1). Article 1656. URL: https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.1656 (дата обращения: 22.09.2023). doi: 10.1002/ecs2.1656.
- Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis / G. Zhou, X. Zhou, Y. He, et al. // Glob. Chang. Biol. 2017. Vol. 23. P. 1167–1179. doi: 10.1111/gcb.13431.
- Smitha Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands / M. Abdulla, A. Hastingsa, D. R. Chadwickb, et al. // Agriculture, Ecosystems and Environment. 2018. Vol. 253. P. 62–81. doi: 10.1016/j.agee.2017.10.023.
- Gebregerges T., Tessema Z. K., Birhane E. Effect of exclosure ages on woody plant structure, diversity and regeneration potential in the western Tigray region of Ethiopia // Journal of Forest Research. 2017. Vol. 29 (3). P. 697–707. doi: 10.1007/s11676-017-0512-6.
- Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia / T. Gebregergs, Z. K. Tessema, N. Solomon, et al. // EcolEvol. 2019. Vol. 9. P. 6468–6479. doi: 10.1002/ece3.5223.
- Lavallee J. M., Soong J. L., Cotrufo M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century // Glob. Change Biol. 2020. Vol. 26. P. 261–273. doi: 10.1111/gcb.14859.
- Бойцова Л. В., Непримерова С. В., Зинчук Е. Г. Влияние различных систем удобрений на секвестрацию органического углерода в дерново-глеевой почве // Проблемы агрохимии и экологии. 2019. № 4. С. 15–20.
- Islam Md. R., Singh B., Dijkstra F. A. Stabilisation of soil organic matter: interactions between clay and microbes // Biogeochemistry. 2022. Vol. 160. P. 145–158. doi: 10.1007/s10533-022-00956-2.
- Прямая эмиссия закиси азота из лугопастбищных почв Северо-западного Федерального округа Российской Федерации / Е. Я. Рижия, Н. П. Бучкина, Е. А. Соломатова, Балашов Е. В. // Агрофизика. 2013. № 1. С. 1–7.
- Доспехов Б. А. Методика полевого опыта. М.: Колос, 1979. 419 с.
- Тюрин И. В. Органическое вещество почв и его роль в почвообразовании и плодородии. Учение о почвенном гумусе. М.: ЁЁ Медиа, 2012. С. 290.
- Бойцова Л. В., Непримерова С. В., Зинчук Е. Г. Влияние минералогического состава почв на стабилизацию в них органического углерода // Агрофизика. 2019. № 4. С. 1–8. doi: 10.25695/AGRPH.2019.04.01.
- Christensen B. T. Physical fractionation of soil and organic matter in primary particle size and density separates // Advances in Soil Science. 1992. Vol. 20 (1). 90 p.
- Растворова О. Г. Физика почв (Практическое руководство). Л.: Из-во Ленингр. ун-та, 1983. 196 с.
- Бойцова Л. В., Пухальский Я. В. Динамика содержания органического вещества, его лабильной и инертной частей в дерново-подзолистой супесчаной почве разной степени окультуренности // Агрофизика. 2013 № 3. C. 14–22.
- Бойцова Л. В. Органическое вещество и его легкая фракция в профиле дерново-подзолистой супесчаной почвы // Агрофизика. 2015. № 3. C. 1–8.
- The effect of organic carbon content on soil compression characteristics / K. N. Suravi, K. Attenborough, S. Taherzadeh, et al. // Soil & Tillage Research. 2021. Vol. 209. 104975. URL: https://www.sciencedirect.com/science/article/pii/S0167198721000453?via%3Dihub (дата обращения: 10.10.2023). doi: 10.1016/j.still.2021.104975.
- Preferential transport in macropores is reduced by soil organic carbon / M. Larsbo, J. Koestel, T. Kätterer, et al. // Vadose Zone Journal. 2016. Vol. 15. P. 1–17. URL: https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/vzj2016.03.0021 (дата обращения: 10.10.2023). doi: 10.2136/vzj2016.03.0021.
- Dick R. Lecture on soil bacteria in soil Microbiology, personal collection of R. Dick // The Ohio state University School of Environment and Natural Resources. Columbus. 2009. Vol. 59. P. 15–20. doi: 10.1080/17429145.2011.597002.
- Агроэкологическая оценка минералогического состава почв / В. И. Савич, С. Л. Белопухов, М. Е. Котенко, и др. // Вестник Российского Университета Дружбы Народов. Серия: Агрономия и животноводств. 2016. № 3. С. 30–39. doi: 10.22363/2312-797X-2016-3-30-39.
Supplementary files
