Development of a Methodology for the Supervisory Authority's Assessment of the Adequacy of the Amount of Expected Credit Losses Calculated by Commercial Banks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article examines the development of an algorithm for assessing the adequacy of the expected credit losses (ECL), calculated by commercial banks from the point of view of the Central Bank of the Russian Federation as the supervisory authority of the banking system of Russia. For this purpose, the comparison between the modeling of potential losses for the loan portfolio of individual’s portfolio of homogeneous loans with the bank's actually created reserves for possible loan losses was made. There are identified separate independent components: PD, EAD, LGD, while ECL was modelled, each of which is predicted taking into account the characteristics of the indicator and the register of data provided to the Bank of Russia from credit organizations. The article concludes with recommendations on the preparation of the final report on the adequacy of the reservation by a commercial bank of the analyzed segment of the loan portfolio. The purpose of the study is to develop an algorithm for assessing the sufficiency of the value of the ECL calculated by commercial banks from the point of view of the Bank of Russia as the supervisory authority of the banking system of the Russian Federation. To achieve the goal, the following tasks were solved in the work: 1) The main components of the ECL are investigated; 2) Mathematical modeling of credit risk attributes is carried out taking into account the specifics of the Bank of Russia's activities; 3) The results of the model are interpreted from the point of view of the supervisory authority. Materials and Methods. Educational literature and scientific publications were reviewed for the analysis of ECL, which revealed theoretical approaches and practical aspects to the construction of PD, EAD, LGD models based on statistical algorithms and machine learning methods. Conclusions: the study of the main components of ECL and their impact on the final value of credit losses was conducted; a model for calculating ECL was made using various machine learning algorithms; was made the interpretation of the results of the ECL model from the point of view of practical application in the Bank of Russia.

About the authors

Vitaliy V. Bogdanov

Central Bank of Russian Federation

Email: vit190298@yandex.ru
Main economist of 2nd department of SAR UARCR Moscow, Russian Federation

Natalia V. Grineva

Financial University under the Government of the Russian Federation

Email: ngrineva@fa.ru
Cand. Sci. (Econ.), Associate Professor, Associate Professor of the Department of data analysis and machine learning Moscow, Russian Federation

References

  1. Aris E. T. Credit risk assessment models / Credit risk management-problems of risk analysis / 2017. -No. 4. -pp. 68-75. -URL: https://www.risk-journal.com/jour/article/viewFile/97/96
  2. Afanasyev S. Development of LGD models for retail lending. Part 1: Data preparation / Scoring day X-Risk management in a credit institution / 2021/-№3(43). -pp. 4-23. -URL: https://www.dvbi.ru/portals/0/DOCUMENTS_SHARE/RISK_MANAGEMENT/Scoring_Day_2021.pdf
  3. S. Landini, M. Uberti, S. Casselina Credit risk migration rates modelling as open systems II: A simulation model and IFRS9-baseline principles / 2019. -№50, c. 175-189. URL: https://ezpro.fa.ru:2603/science/article/pii/S0954349X19301092?via%3Dihub
  4. Rakhaev V. A. Development of credit risk assessment methods for the formation of reserves for possible loan losses. Finance: Theory and Practice/Finance: Theory and Practice. 2020;24(6): 82-91. -URL: https://financetp.fa.ru/jour/article/view/1093/765
  5. Polyansky Yu. Problems of quality assessment of PVR models. Modern approaches to validation of LGD / Scoring day X models-Risk management in a credit institution / 2021/ -№3 (43). -pp. 4-23. -URL: https://www.dvbi.ru/portals/0/DOCUMENTS_SHARE/RISK_MANAGEMENT/Scoring_Day_2021.pdf
  6. «Methodology for determining the parameters of expected credit losses» -http://bmcenter.ru/Files/R_OK_Svyaz_OK_FS_Metodika_opredeleniya_parametrov_OKU
  7. Regulation of the Bank of Russia dated August 6, 2015 No. 483-P «On the procedure for calculating the amount of credit risk based on internal ratings»
  8. Gini coefficient. From economics to machine learning. -URL: https://habr.com/ru/company/ods/blog/350440/
  9. CFA-The Monte Carlo method -URL: https://fin-accounting.ru/cfa/l1/quantitative/cfa-monte-carlo-simulation

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».