Translation studies and artificial intelligence: problems, challenges, and risks

Cover Page

Cite item

Abstract

the paper examines the possibility of using artificial intelligence (AI) in translation theory and applied translation studies, and also presents proposals for integrating AI not only into translation practice, but also into translation curricula. The use of AI can improve the efficiency of translation and provide non-language readers with access to relevant information. The new opportunities that AI is opening up in the field of translation force modern linguists to take a fresh look at such important ethical issues as the role of humans in translation, the accuracy and cultural acceptability of translations, and the impact of AI on the work of a modern translator. It is shown that translation studies can play a decisive role in improving the accuracy of translation using AI, “culturally adapting” AI systems for different language pairs. By using translation studies expertise, linguists, AI developers, and researchers can improve the performance of AI-based translation systems, which will ultimately improve the quality of the translated text by taking into account valuable information about the cultural nuances, context, and meanings of the source text.

About the authors

S. N Vekovishcheva

Federal State University of Education

Email: vekovishcheva_sn@mail.ru

N. A Ivanova

Moscow State Institute of International Relations (University) of Russian Foreign Ministry

Email: ivanova_na@inno.mgimo.ru

I. A Ulitkin

Federal State University of Education

Email: ulitkin-ilya@yandex.ru

References

  1. Chetouani M., Dignum V., Lukowicz P., Sierra C. (Eds.) Human-Centered Artificial Intelligence: Advanced Lectures. Lecture Notes in Computer Science. Berlin: Springer, 2023. Vol. 13500. 429 p.
  2. Christoforaki M., Beyan O. AI Ethics-A Bird’s Eye View // Applied Sciences. 2022. Vol. 12 (9). P. 1 ? 17.
  3. Eszenyi R., Bedn?rov?-Gibov? K., Robin E. Artificial Intelligence, Machine Translation & Cyborg Translators: A Clash of Utopian and Dystopian Visions // Orbis Linguarum. 2023. Vol. 21 (2). P. 102 ? 113.
  4. Heer J. Agency Plus automation: Designing Artificial Intelligence into Interactive Systems // Proceedings of the National Academy of Sciences of the United States of America. 2019. Vol. 116 (6). P. 1844 ? 1850.
  5. Hou Q., Zhang L. Design and Implementation of Interactive English Translation System in Internet of Things Auxiliary Information Processing // Wireless Communications and Mobile Computing. 2022. Vol. 2022.P. 1 ? 12.
  6. Huriye A. Z. The Ethics of Artificial Intelligence: Examining the Ethical Considerations Surrounding the Development and Use of AI // American Journal of Technology. 2023. Vol. 2 (1).P. 37 ? 45.
  7. Jia Z. Analysis Methods for the Planning and Dissemination Mode of Radio and Television Assisted by Artificial Intelligence Technology // Mathematical Problems in Engineering. 2022. Vol. 2022. P. 1 ? 11.
  8. Killman J. Context as Achilles’ Heel of Translation Technologies // Translation and Interpreting Studies. 2015. Vol. 10 (2). P. 203 ? 222.
  9. Nanomi Arachchige I. A., Suraweera S., Herath D. Transformer-based Language Models for the Identification of Idiomatic Expressions // Proceedings of the International Conference EUROPHRAS. 2022. Vol. 2022. P. 119 ? 127.
  10. Rafiq F., Dogra N., Adil M., Wu J.-Z. Examining Consumer’s Intention to Adopt AI-Chatbots in Tourism Using Partial Least Squares Structural Equation Modeling Method // Mathematics. 2022. Vol. 10 (13). P. 1 ? 15.
  11. Shao Y. Human-Computer Interaction Environment Monitoring and Collaborative Translation Mode Exploration Using Artificial Intelligence Technology // Journal of Environmental and Public Health. 2022. Vol. 2022. P. 4702003.
  12. Vereschak O., Bailly G., Caramiaux B. How to Evaluate Trust in AI-Assisted Decision Making? A Survey of Empirical Methodologies // Proceedings of the ACM on Human-Computer Interaction. 2021. Vol. 5 (CSCW2). P. 1 – 39.
  13. Yang H., Kyun S. The Current Research Trend of Artificial Intelligence in Language Learning: A Systematic Empirical Literature Review From an Activity Theory Perspective // Australasian Journal of Educational Technology. 2022. Vol. 38 (5). P. 180 ? 210.
  14. Yang Q., Steinfeld A., Ros? C., Zimmerman J. Re-examining Whether, Why, and How Human-AI Interaction Is Uniquely Difficult to Design // Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020, Vol. 2020. P. 1 ? 13.
  15. Zhao X., Jin X. A Comparative Study of Text Genres in English-Chinese Translation Effects Based on Deep Learning LSTM // Computational and Mathematical Methods in Medicine. 2022. Vol. 2022. P. 1 ? 9.
  16. Zhong W., Chin T. The Role of Translation in Cross-Cultural Knowledge Transfer within a MNE’s Business Networks // Chinese Management Studies. 2015. Vol. 9 (4). p. 589 ? 610.
  17. Zhu J., Liapis A., Risi S., Bidarra R., Youngblood G. M. Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation // Proceedings of 2018 IEEE Conference on Computational Intelligence and Games (CIG 2018). 2018. P. 1 ? 8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).