Vibration protection system with controlled inertial damper
- Autores: Chernyshev V.I.1, Polyakov R.N.1, Fominova O.V.1
-
Afiliações:
- Orel State University named after I.S. Turgenev
- Edição: Volume 24, Nº 1 (2025)
- Páginas: 164-173
- Seção: MECHANICAL ENGINEERING
- URL: https://journal-vniispk.ru/2542-0453/article/view/311516
- DOI: https://doi.org/10.18287/2541-7533-2025-24-1-164-173
- ID: 311516
Citar
Texto integral
Resumo
As a result of applying the theory of dynamic programming to vibration protection systems as cyclic control objects, relations were obtained that, by linking the components of the system state vector and control, allow implementing the procedure of the local minimum principle to find the optimal positional control function in relation to typical quality indicators that are clearly independent of control. Examples of finding the optimal positional control function for oscillations of an active vibration protection system are given. It is shown that, in the case of harmonic oscillations, for the adopted basic model with two degrees of freedom, the necessary adjustment of the amplitude and phase is carried out by means of discrete-type control signals, which ensures the achievement of the required vibration safety indicators for the protected object according to the adopted functional criterion.
Sobre autores
V. Chernyshev
Orel State University named after I.S. Turgenev
Autor responsável pela correspondência
Email: chernyshev_46@mail.ru
ORCID ID: 0000-0003-2008-3125
Doctor of Science (Engineering), Professor
RússiaR. Polyakov
Orel State University named after I.S. Turgenev
Email: romanpolak@mail.ru
ORCID ID: 0000-0001-8794-778X
Doctor of Science (Engineering), Professor, Head of the Department of Mechatronics, Mechanics and Robotics
RússiaO. Fominova
Orel State University named after I.S. Turgenev
Email: gari1@list.ru
ORCID ID: 0000-0002-8345-6622
Candidate of Science (Engineering), Associate Professor
RússiaBibliografia
- Goverdovskiy V.N., Zobov A.V. Status and methods of improving the quality of helicopter vibration protection. Modern Technologies. System Analysis. Modeling. 2009. No. 4 (24). P. 191-196. (In Russ.)
- Kalashnikov V.S., Kuzina E.A., Yashin D.S. Analysis of the causes of vibration in aviation products. Trudy Mezhdunarodnogo Simpoziuma «Nadezhnost' i Kachestvo». 2016. V. 1. P. 165-167. (In Russ.)
- Kim D.-H., Kwak D., Song Q. Demonstration of active vibration cancellation system on Korean utility helicopter. International Journal of Aeronautical and Space Sciences. 2019. V. 20. P. 249-259. doi: 10.1007/s42405-018-0106-3
- Randin D.G. Research of dynamic characteristics of controlled damper. Vestnik of Samara State Technical University. Technical Sciences Series. 2013. No. 2 (38). P. 64-70. (In Russ.)
- Sorokin V.N., Zakharenkov N.V. Increasing efficiency of vibration protection system by using pneumatic rubber cord devices. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2017. V. 1, no. 1. P. 50-57. (In Russ.)
- Voronov A.V., Karaseva T.V. Analysis of the appearance of vibration in aircraft with the purpose of introducing technologies and systems for its study. Universum: Technical Sciences. 2023. No. 1 (106). (In Russ.). Available at: https://7universum.com/ru/tech/archive/item/14874
- Genkin M.D., Yablonskiy V.V. Active vibration protection systems. V sb.: «Vibroizoliruyushchie Sistemy v Mashinakh i Mekhanizmakh». Moscow: Nauka Publ., 1977. P. 3-11. (In Russ.)
- Fominova O.V., Savin L.A., Chernyshev V.I. Theoretical aspects of the optimal controllable vibroprotection processes synthesis. Proceedings of the Southwest State University. Series: Engineering and Technology. 2013. No. 3. P. 44-50. (In Russ.)
- Chernyshev V.I., Savin L.A., Fominova O.V. Indirect control of oscillations: elements of theory. SPIIRAS Proceedings. 2019. V. 18, no. 1. P. 148-175. (In Russ.). doi: 10.15622/sp.18.1.148-175
- Chernyshev V.I., Fominova O.V. Controlled vibration protection systems: dynamic programming and optimization. World of Transport and Technological Machines. 2022. No. 4-1 (79). P. 55-61. (In Russ.). doi: 10.33979/2073-7432-2022-1(79)-4-55-61
- Paulitsch C., Gardonio P., Elliott S.J. Active vibration control using an inertial actuator with internal damping. The Journal of the Acoustical Society of America. 2006. V. 119, Iss. 4. P. 2131-2140. doi: 10.1121/1.2141228
- Swanson D., Black P., Girondin V., Bachmeyer P., Jolly M. Active vibration control using circular force generators. European Rotorcraft Forum 2015 (September, 01-04, 2015, Munich, Germany).
- Prakash K., Lesieutre G.A. Optimization of circular force generator placement for rotorcraft hub force and moment. Journal of the American Helicopter Society. 2019. V. 64, Iss. 1. doi: 10.4050/jahs.64.012002
- Black P.R., Swanson D.A., Badre-Alam A., Janowski M.D., Altieri R.E., Meyers A.D., Ryu J. Circular force generator devices, systems, and methods for use in an active vibration control system. Patent US, 2015/0321753 A1. (Publ. 12.11.2015)
Arquivos suplementares
