Applications of Generative Artificial Intelligence in Socioeconomic Forecasting

Cover Page

Cite item

Full Text

Abstract

This article examines the application of using artificial intelligence (AI) and large language models (LLMs) for forecasting key macroeconomic indicators, including gross domestic product (GDP), inflation, unemployment rates, interest rates, and the Gini coefficient. It analyzes the capabilities of these novel approaches compared to traditional forecasting methods – such as econometric, equilibrium, and agent-based models – across different time horizons. The paper summarizes both academic research and practical implementations, including central bank experiments on using fundamental models and LLM-like architectures (such as GPT) for macroeconomic forecasting. Special attention is given to the ability of LLMs to analyze textual information and generate predictions that are comparable in accuracy to, and in some instances superior to, those produced by professional experts. The review also covers the latest fundamental time-series models, such as TimeGPT, TimesFM, and Moirai, which employ transformer architectures tailored to economic data. The main findings indicate that AI and LLMs provide a significant advantage in terms of flexibility, adaptability, and the capacity to process diverse information sources, especially in environments characterized by high volatility or information saturation. However, challenges remain regarding the interpretability, stability, and long-term consistency of predictions. The article concludes that the best prospects for advancing macroeconomic forecasting lie in hybrid approaches that combine the computational power and adaptability of AI with the theoretical rigor and explainability of traditional economic and mathematical models.

About the authors

A. R. Bakhtizin

Central Economics and Mathematics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: albert.bakhtizin@gmail.com

doctor of Economics, corresponding member of the Russian Academy of Sciences, director

Russian Federation, Moscow

A. V. Bragin

Central Economics and Mathematics Institute of the Russian Academy of Sciences

Email: research@alexbragin.com

the applicant

Russian Federation, Moscow

References

  1. Bragin, A. V., & Bakhtizin, A. R. (2023). Features of the implementation of large eco-nomic models. π-Economy, 16(3), 107–122. https://doi.org/10.18721/JE.16307
  2. Bragin, A. V., Bakhtizin, A. R., & Makarov, V. L. (2023). Fourth-generation large lan-guage models as a new tool in scientific work. Artificial Societies, 18(1).
  3. Bragin, A. V., Bakhtizin, A. R., & Makarov, V. L. (2022). Modern software tools for agent-based modeling. Artificial Societies, 17(4).
  4. Makarov, V. L., Bakhtizin, A. R., Sushko, E. D., & Ageeva, A. F. (2017). Artificial so-ciety and real demographic processes. Economics and Mathematical Methods, 53(1), 3–18.
  5. Makarov, V. L., Bakhtizin, A. R., & Sushko, E. D. (2015). Simulation of reproductive behavior patterns in an agent-based regional model. Economy of Region, (3), 312–322.
  6. Makarov, V. L., Bakhtizin, A. R., & Epstein, J. M. (2022). Agent-based modeling for a complex world (2nd rev. ed.). Moscow: Scientific Publications Department, GAUGN.
  7. Makarov, V. L., & Bakhtizin, A. R. (2013). Social modeling — A new computer break-through (agent-based models). Moscow: Ekonomika.
  8. Bakhtizin, A. R. (2008). Agent-based models of the economy. Moscow: Ekonomika.
  9. Kezhaev, M. K., Melnikov, A. P., Fedorov, V. P., & Bragin, A. V. (2024). Time series forecasting using a neural network with “transformer” architecture. In Proceedings of the 1st Scientific and Practical Conference “Theoretical Informatics and Computer Technologies” (Moscow, November 1, 2023) (pp. 23–25). Moscow: Bauman Moscow State Technical Uni-versity Publishing.
  10. Carriero A., Pettenuzzo D., & Shekhar S. (2025). «Macroeconomic Forecasting with Large Language Models». arXiv preprint arXiv:2407.00890. (Comprehensive evaluation of multiple time-series foundation models vs. VAR, BVAR, factor models on FRED-MD da-taset).
  11. Christoffel K., Coenen G. and Warne A. Forecasting with DSGE models. Working paper series no 1185 / May 2010.
  12. Poledna S., Miess M.G., Hommes Cars. Economic Forecasting with an Agent-Based Model. Working Paper. International Institute for Applied Systems Analysis. Laxenburg, Austria, 2020.
  13. Pierdzioch C., Gupta R., Hassani H., & Silva E.S. Forecasting changes of economic inequality: a boosting approach.” Social Science Journal, 2022. 59 (2), Р. 252–268.
  14. Heidrich B. Forecasting using Foundation Models and sktime. URL: https://medium.com/@benedikt_heidrich/forecasting-using-foundation-models-and-sktime-4d5a09909742.
  15. Tomas A., Ales M., Sveda J. First use of AI in inflation forecasting at the CNB. [Blog post]. CNB cnBlog. URL: https://www.cnb.cz/en/about_cnb/cnblog/First-use-of-AI-in-inflation-forecasting-at-the-CNB
  16. Faria-e-Castro M., Leibovici F. Artificial Intelligence and Inflation Forecasts. Federal Reserve Bank of St. Louis Review, Fourth Quarter 2024, Vol. 106, № 12. P. 1–14. https://doi.org/10.20955/r.2024.12 https://www.stlouisfed.org/publications/review/2024/nov/artificial-intelligence-and-inflation-forecasts.
  17. Leland Bybee J. Surveying Generative AI’s Economic Expectations. // Yale Universi-ty, 2023.
  18. NIXTLA. Meet TimeGPT. 2023.
  19. Korinek A. LLMs Learn to Collaborate and Reason: December 2024. Update to ‘Gen-erative AI for Economic Research: Use Cases and Implications for Economists,’ published // Journal of Economic Literature. 2024. № 61 (4). https://doi.org/10.1257/jel.20231736.
  20. Mulayim O.B. et al. Are Time Series Foundation Models Ready to Revolutionize Pre-dictive Building Analytics? // Proceedings of the 11th ACM International Conference on Sys-tems for Energy-Efficient Buildings, Cities, and Transportation. 2024. С. 169–173.
  21. Rasul K. et al. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv 2024 //arXiv preprint arXiv:2310.08278. 2024.
  22. McCarthy S., Alaghband G. Fin-ALICE: Artificial Linguistic Intelligence Causal Econometrics // Journal of Risk and Financial Management. 2024. Т. 17. № 12. С. 537.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Bakhtizin A.R., Bragin A.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).