Hybrid States of Biomolecules in Strong-Coupling Regime


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The strong coupling of exciton and plasmon states is the result of the reversible energy exchange between the excited states of atomic exciton systems or molecules and the electromagnetic field. This leads to the formation of hybrid (mixed) states whose energies differ from those of the exciton and photon. To date, the implementation of strong-coupling hybrid states has been attracting great attention in terms of designing state-of-the-art emitting systems and quantum information technologies; controlling chemical reaction efficiency and targeted influence on biological systems; and applying the observed effects in medicine, microelectronics, robotics technologies, and other fields. This review deals with a model of strong light-matter interaction and its characteristics, ways to the practical implementation of hybrid states (including those in biological systems), and parameters affecting strong coupling. The recent advances in practical applications of strong coupling effects, prospects for their use, and the problems entailed are discussed as well.

About the authors

A. V. Kosmyntseva

National Research Nuclear University “MIFI” (Moscow Engineering and Physical Institute)

Email: igor.nabiev@gmail.com
Russian Federation, Moscow, 115409

I. R. Nabiev

National Research Nuclear University “MIFI” (Moscow Engineering and Physical Institute); Laboratoire de Recherche en Nanosciences, LRN-EA4682

Author for correspondence.
Email: igor.nabiev@gmail.com
Russian Federation, Moscow, 115409; 51 rue Cognac Jay, Reims, 51100

Yu. P. Rakovich

National Research Nuclear University “MIFI” (Moscow Engineering and Physical Institute); Centro de Física de Materiales e Universidad del País Vasco

Email: igor.nabiev@gmail.com
Russian Federation, Moscow, 115409; carril de Manuel de Lardizabal, Donostia-San Sebastián, 20018

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.