Changes of cerebral microcirculation, oxygenation and brain hydration in posttraumatic penumbra at moderate traumatic brain injury

Cover Page

Cite item

Abstract

the aim was to study the changes of cerebral microcirculation, oxygenation, and hydration in the foci of posttraumatic "penumbra" (PP) in patients with isolated moderate traumatic brain injury (TBI). Materials and Methods. Seventy-seven adult patients with moderate TBI (women 35; men 42, median age 37 years) were included in a retrospective, non-randomized, single-center study. Inclusion criteria: Glasgow Coma Scale (GCS) < 13 and > 10 at admission; perfusion computed tomography (PCT) performed within 2 days after injury and admission; unilateral frontal/frontotemporal lesions. All patients underwent PCT, which measured net water uptake (NWU) in the PP, as well as microcirculation parameters: cerebral blood flow (CBF), regional cerebral blood volume (CBV), mean transit time (MTT), and time to peak concentration (TTP). Cerebral saturation (SctO2) was assessed using near-infrared spectroscopy in the frontal lobes simultaneously with PCT or immediately after it. Data are presented as median [interquartile range]. Parametric and nonparametric statistical methods were used for the analysis. Results. Elevated NWU values in PP zone were statistically significantly correlated with CBV (p < 0.001) and inversely correlated with TTP, CBF, and SctO2 (p < 0.05). No significant correlations were found between NWU in PP and MTT (p > 0.05). Conclusion. Brain edema after moderate TBI correlates with cerebral microcirculation and saturation parameters (CBF, CBV, TTP and SctO2).

About the authors

A. O Trofimov

Privolzhsky Research Medical University; Saratov State University; Clinic "Persona", Nizhny Novgorod

N. A Eremina

Clinic "Persona", Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod

K. A Trofimova

Privolzhsky Research Medical University

G. V Kalentev

City Clinical Hospital №10, Nizhny Novgorod

D. E Bragin

University of New Mexico School of Medicine, Albuquerque, USA; Lovelace Biomedical Research Institute, Albuquerque, NM, USA.

F. A Sevryukov

Privolzhsky Research Medical University

Email: fedor_sevryukov@mail.ru
ORCID iD: 0000-0001-5120-2620

References

  1. Yue J., Etemad L. et al. Prior traumatic brain injury is a risk factor for in-hospital mortality in moderate to severe traumatic brain injury: a TRACK-TBI cohort study // Trauma surgery & acute care open. 2024. № 9 (1). P. e001501. 10.1136/tsaco-2024-001501
  2. Sun A., Cao Y., Jia Z. et al. Prognostic value of CBV index in patients with acute ischemic stroke treated with endovascular thrombectomy in late therapeutic window // Frontiers in neurology. 2024. № 14. P. 1282159. 10.3389/fneur.2023.1282159
  3. Vlodavsky E., Palzur E. et al. Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study // Acta neuropathologica. 2005. № 110 (2). P. 120 – 126. 10.1007/s00401-004-0946-8
  4. Trabold R., Er?s C., Zweckberger K. et al. The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice // Journal of cerebral blood flow and metabolism. 2010. № 30 (1). P. 130 – 139. 10.1038/jcbfm.2009.196
  5. Stoffel M., Eriskat J., Plesnila M. et al. The penumbra zone of a traumatic cortical lesion: a microdialysis study of excitatory amino acid release // Acta neurochirurgica. Supplement. 1997. № 70. P. 91 – 93. 10.1007/978-3-7091-6837-0_28
  6. Schwarzmaier S., Kim S. et al. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice // Journal of neurotrauma. 2010. № 27 (1). P. 121 – 130. 10.1089/neu.2009.1114
  7. Klatzo I. Pathophysiological aspects of brain edema // Acta neuropathologica. 1987. № 72 (3). P. 236 – 239. 10.1007/BF00691095
  8. Nagelhus E.A., Ottersen O.P. Physiological roles of aquaporin-4 in brain // Physiological reviews. 2013. № 93 (4). P. 1543 – 1562. 10.1152/physrev.00011.2013
  9. Taya K., Gulsen S., Okuno K., et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema // Acta Neurochir Suppl. 2008. № 102. P. 425 – 429. 10.1007/978-3-211-85578-2_83
  10. Amiry-Moghaddam M., Williamson A., Palomba M., et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice // Proc Natl Acad Sci USA. 2003. № 100. P. 13615 – 1320. 10.1073/pnas.2336064100
  11. Changshu K., Wai S.P., Ho K.N., Jesse C.P., Yung C. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats // Neuroscience letters. 2001. № 301 (1). P. 21 – 24. 10.1016/s0304-3940(01)01589-0
  12. Morris G.P., Foster C.G., Sutherland B.A., Grubb S. Microglia contact cerebral vasculature through gaps between astrocyte endfeet // Journal of Cerebral Blood Flow & Metabolism. 2024. № 44 (12). P. 1472 – 1486. doi: 10.1177/0271678X241280775
  13. Broocks G. et al. Ischemic lesion growth in acute stroke: Water uptake quantification distinguishes between edema and tissue infarct // J. Cereb. Blood Flow. Metab. 2020. № 40. P. 823 – 832.
  14. Alzahrani A., Zhang X., Albukhari A., Wardlaw J.M., Mair G. Assessing Brain Tissue Viability on Nonenhanced Computed Tomography After Ischemic Stroke // Stroke. 2023. № 54. P. 558 – 566.
  15. van Horn N., Broocks G., Kabiri R. et al. Cerebral Hypoperfusion Intensity Ratio Is Linked to Progressive Early Edema Formation // Journal of clinical medicine. 2022. № 11 (9). P. 2373. 10.3390/jcm11092373
  16. Lin L., Bivard A., Kleinig T., Spratt N.J. et al. Correction for delay and dispersion results in more accurate cerebral blood flow ischemic core measurement in acute stroke // Stroke. 2018. № 49. P. 924 – 930. 10.1161/STROKEAHA.117.019562
  17. Steffen P., Winkelmeier L., Kniep H. et al. Quantification of ischemic brain edema after mechanical thrombectomy using dual-energy computed tomography in patients with ischemic stroke // Scientific reports. 2024. № 14 (1). P. 4148. 10.1038/s41598-024-54600-0
  18. Broocks G., Kniep H., Kemmling A. et al. Effect of intravenous alteplase on ischaemic lesion water homeostasis // European journal of neurology. 2020. № 27 (2). P. 376 – 383. 10.1111/ene.14088
  19. West C., Hong C., Bremer A. et al. Hemispheral ischemic cerebral cortical edema in a primate (M. mulatta) // in: Pappius H.M. Feindel W. Dynamics of brain edema. Springer Berlin Heidelberg, Berlin, Heidelberg 1976. P. 244 – 253
  20. Watanabe O., West C.R., Bremer A. Experimental regional cerebral ischemia in the middle cerebral artery territory in primates. Part 2: Effects on brain water and electrolytes in the early phase of MCA stroke // Stroke. 1977. № 8 (1). P. 71 – 76. 10.1161/01.str.8.1.71
  21. Wang J., Xiong X., Ma Y. et al. Higher baseline subcortical net water uptake in computed tomography predicts malignant middle cerebral artery infarction in patients with acute ischemic stroke // Clinical radiology. 2024. S0009-9260(24)00411-2. 10.1016/j.crad.2024.08.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).