Numerical solution of Cauchy problems with multiple poles of integer order

封面

如何引用文章

全文:

详细

We consider Cauchy problem for ordinary differential equation with solution possessing a sequence of multiple poles. We propose the generalized reciprocal function method. It reduces calculation of a multiple pole to retrieval of a simple zero of accordingly chosen function. Advantages of this approach are illustrated by numerical examples. We propose two representative test problems which constitute interest for verification of other numerical methods for problems with poles.

作者简介

Aleksandr Belov

Lomonosov Moscow State University; Peoples’ Friendship University of Russia (RUDN University)

Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263

Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher of Faculty of Physics, Lomonosov Moscow State University

1, bld. 2, Leninskie Gory, Moscow, 119991, Russian Federation; 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

Nikolay Kalitkin

Keldysh Institute of Applied Mathematics RAS

编辑信件的主要联系方式.
Email: kalitkin@imamod.ru
ORCID iD: 0000-0002-0861-1792

Doctor of Physical and Mathematical Sciences, Professor, Corresponding member of the RAS, head of department

4A, Miusskaia Sq., Moscow, 125047, Russian Federation

参考

  1. L. F. Janke E. Emde F., Taffeln horere Functionen. B.G. Teubbner Verlagsgesellschaft, Stuttgart, 1960.
  2. NIST digital library of mathematical functions, https://dlmf.nist.gov.
  3. C. F. Corliss, “Integrating ODE’s in the complex plane - pole vaulting”, Mathematics of Computation, vol. 35, pp. 1181-1189, 1980. doi: 10.1090/S0025-5718-1980-0583495-8.
  4. B. Fornberg and J. A. C. Weideman, “A numerical methodology for the Painlevé equations”, Journal of Computational Physics, vol. 230, pp. 5957-5973, 2011. doi: 10.1016/j.jcp.2011.04.007.
  5. M. Fasondini, B. Fornberg, and J. A. C. Weideman, “Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces”, Journal of Computational Physics, vol. 344, pp. 36- 50, 2017. doi: 10.1016/j.jcp.2017.04.071.
  6. I. M. Willers, “A new integration algorithm for ordinary differential equations based on continued fraction approximations”, Communications of the ACM, vol. 17, pp. 504-508, 1974. doi: 10.1145/361147.361150.
  7. A.A.AbramovandL.F.Yukhno,“AmethodforcalculatingthePainleve transcendents”, Applied Numerical Mathematics, vol. 93, pp. 262-267, 2015. doi: 10.1016/j.apnum.2014.05.002.
  8. A. A. Belov and N. N. Kalitkin, “Reciprocal function method for Cauchy problems with first-order poles”, Doklady Mathematics, vol. 101, no. 2, pp. 165-168, 2020. doi: 10.1134/S1064562420020040.
  9. E. Hairer, G. Wanner, and S. P. Nørsett, “Solving ordinary differential equations: I. Nonstiff problems”, in Springer Series in Computational Mathematics. Berlin: Springer, 1993, vol. 8. doi: 10.1007/978-3-54078862-1.
  10. E. Hairer and G. Wanner, “Solving ordinary differential equations: II. Stiff and differential-algebraic problems”, in Springer Series in Computational Mathematics. Berlin: Springer, 1996, vol. 14. doi: 10.1007/9783-642-05221-7.
  11. A. A. Belov and N. N. Kalitkin, “Efficient numerical integration methods for the Cauchy problem for stiff systems of ordinary differential equations”, Differential equations, vol. 55, no. 7, pp. 871-883, 2019. doi: 10.1134/S0012266119070012.

补充文件

附件文件
动作
1. JATS XML