New three‑component supramolecular forms of fenbendazole: determination of comparative acute toxicity in white mice
- Authors: Demkina O.V.1, Khalikov S.S.2, Khalikov M.S.2, Ilyin M.M.2, Karamushkina S.V.3
-
Affiliations:
- Far Eastern State Agrarian University
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Federal State Budgetary Educational Institution of Higher Education Russian State Agrarian University - K.A. Timiryazev Moscow Agricultural Academy
- Issue: Vol 17, No 4 (2025)
- Pages: 182-205
- Section: Biochemistry, Genetics and Molecular Biology
- Published: 31.10.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/351959
- DOI: https://doi.org/10.12731/2658-6649-2025-17-4-1489
- ID: 351959
Cite item
Full Text
Abstract
Background. The development of new forms of anthelminthic drugs, such as supramolecular complexes of fenbendazole, is a topical task in the conditions of increasing parasite resistance to traditional drugs. Improvement of the solubility and bioavailability of fenbendazole is possible by mechanochemical modification of the substance with polymeric substances.
Purpose. Synthesis and comparative evaluation of acute toxicity of new supramolecular forms of fenbendazole in an experiment on white mice.
Materials and methods. The technology of mechanochemical modification of fenbendazole substance (FBZ) with the help of polymeric substances - PVP, arabinoga-lactan (AG), liquorice extract (LE) - produced solid dispersions with increased solubility. The acute toxicity of the supramolecular complexes FBZ:PVP: LE (10:45:45) and FBZ:PVP:AG (10:45:45) was studied in white mice. LD50 values were determined using probit analysis methods. Clinical observations and necropsy were used to assess toxicity. Statistical processing of the data was performed using AtteStat.
Results. New supramolecular forms with higher acute toxicity than pure fenbendazole were obtained by mechanochemical processing of fenbendazole in the presence of polymeric substances. The LD50 for FBZ:PVP: LE was 43729.97 mg/kg and for FBZ:PVP:AG - 49997.07 mg/kg. The FBZ:PVP: LE complex was characterised by more pronounced dose-dependent effects, including loss of appetite, body weight and neurological symptoms compared to FBZ:PVP:AG. The highest mortality was observed in the group receiving FBZ:PVP: LE at a dose of 20000 mg/kg (50%).
Conclusion. The obtained data indicate the promising use of supramolecular forms of fenbendazole to improve anthelminthic efficacy. However, increased toxicity requires further safety studies and dose optimization studies.
About the authors
Olga V. Demkina
Far Eastern State Agrarian University
Author for correspondence.
Email: demkina-olsen@mail.ru
ORCID iD: 0000-0001-9303-4100
SPIN-code: 4628-1555
ResearcherId: KYP-3060-2024
Candidate of Veterinary Sciences, Associate Professor of the Department of Veterinary and Sanitary Examination, Epizootology and Microbiology
Russian Federation, 86, Polytechnicheskaya Str., Blagoveshchensk, 675005, Russian Federation
Salavat S. Khalikov
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
Email: khalikov_ss@ineos.ac.ru
ORCID iD: 0000-0002-4736-5934
SPIN-code: 8931-8242
Scopus Author ID: 57190865687
ResearcherId: T-2164-2018
Doctor of Engineering Sciences, Leading Researcher of the Laboratory of Physiologically Active Organofluorine Compounds
Russian Federation, 28, Vavilov Str., Bldg. 1, Moscow, 119334, Russian Federation
Marat S. Khalikov
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
Email: marat1988@ineos.ac.ru
ORCID iD: 0000-0002-1768-5048
SPIN-code: 1937-9902
Scopus Author ID: 602304510
Researcher of the Laboratory of Physiologically Active Organofluorine Compounds
Russian Federation, 28, Vavilov Str., Bldg. 1, Moscow, 119334, Russian Federation
Mikhail M. Ilyin
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
Email: kotosok@yandex.ru
ORCID iD: 0000-0002-0214-8573
Scopus Author ID: 6602736683
ResearcherId: AAN-9022-2020
PhD in Chemistry, Research Associate at the Laboratory of Stereochemistry of Sorption Processes
Russian Federation, 28, Vavilov Str., Bldg. 1, Moscow, 119334, Russian Federation
Svetlana V. Karamushkina
Federal State Budgetary Educational Institution of Higher Education Russian State Agrarian University - K.A. Timiryazev Moscow Agricultural Academy
Email: Sveta.vetmed@mail.ru
ORCID iD: 0009-0009-6485-7146
SPIN-code: 4828-4148
ResearcherId: LIH-0675-2024
Ph.D. in Biology, Associate Professor, Department of Physiology, Ethology and Biochemistry
Russian Federation, 49, Timiryazevskaya Str., Moscow, 127434, Russian Federation
References
- Arkhipov, I. A. (2009). Anthelmintics: pharmacology and application (pp. 47–55). Moscow: Russian Academy of Agricultural Sciences. ISBN: 978 5 85941 305 8. EDN: https://elibrary.ru/QLTSHX
- Arkhipov, I. A., Varlamova, A. I., Khalikov, S. S., Sadov, K. M., & Dushkin, A. V. (2020). Effect of mechanochemical technology on the anthelmintic efficacy of supramolecular complexes of fenbendazole with licorice extract. Russian Journal of Parasitology, 14(1), 70–74. https://doi.org/10.31016/1998-8435-2020-14-1-70-74. EDN: https://elibrary.ru/DKQINK
- Varlamova, A. I., Arkhipov, I. A., Khalikov, S. S., & Sadov, K. M. (2019). Efficacy of fenbendazole based on a nanoscale supramolecular delivery system with polyvinylpyrrolidone and sodium dioctyl sulfosuccinate against helminth infections. Russian Journal of Parasitology, 13(1), 56–63. https://doi.org/10.31016/1998-8435-2019-13-1-56-63. EDN: https://elibrary.ru/IVVHJM
- Varlamova, A. I., Limova, Yu. V., Sadov, K. M., Sadova, A. K., Belova, E. E., Radionov, A. V., Khalikov, S. S., Chistichenko, Yu. S., Dushkin, A. V., Skira, V. N., & Arkhipov, I. A. (2016). Efficacy of a supramolecular complex of fenbendazole against nematodes in sheep. Russian Journal of Parasitology, (1), 76–81. https://doi.org/10.12737/18364. EDN: https://elibrary.ru/VQVDSP
- Varlamova, A. I., & Arkhipov, I. A. (2020). Biological activity of fenbendazole based on a supramolecular delivery system with disodium salt of glycyrrhizic acid. Agricultural Biology, 55(4), 830–842. https://doi.org/10.15389/agrobiology.2020.4.830rus. EDN: https://elibrary.ru/AICXPB
- Varlamova, A. I., & Arkhipov, I. A. (2020). Comparative acute toxicity of supramolecular complexes of fenbendazole using different polymers for targeted delivery. Russian Journal of Parasitology, 14(2), 83–87. https://doi.org/10.31016/1998-8435-2020-14-2-83-87. EDN: https://elibrary.ru/CBLONP
- Varlamova, A. I., Movsesyan, S. O., Arkhipov, I. A., Khalikov, S. S., Arisov, M. V., Kochetkov, P. P., et al. (2020). Biological activity and pharmacokinetic features of fenbendazole based on a supramolecular targeted delivery system with licorice extract and sodium dioctyl sulfosuccinate. Proceedings of the Russian Academy of Sciences. Biological Series, (6), 565–574. https://doi.org/10.31857/S0002332920060132. EDN: https://elibrary.ru/GBPKFA
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (1986). Retrieved from: https://base.garant.ru/4090914/ (accessed: 01.09.2024).
- Isakova, M. N., Krasnoperov, A. S., Drozdova, L. I., Shkuratova, I. A., & Khonina, T. G. (2023). Study of chronic toxicity of a pharmacological composition based on bacteriocin nisin and silicon glycerolates. Siberian Journal of Life Sciences and Agriculture, 15(4), 112–135. https://doi.org/10.12731/2658-6649-2023-15-4-112-135. EDN: https://elibrary.ru/SRZSNT
- Medvedeva, E. N., Babkin, V. A., & Ostroukhova, L. A. (2003). Larch arabinogalactan — properties and prospects of use (review). Chemistry of Plant Raw Material, (1), 27–37. EDN: https://elibrary.ru/HYPXOB
- GOST 33216 2014. Guidelines for the care and maintenance of laboratory animals. Rules for the maintenance and care of laboratory rodents and rabbits (2016). Retrieved from: https://protect.gost.ru/document.aspx?control=7&id=202426 (accessed: 02.09.2024).
- Rybakova, A. V., Makarova, M. N., Kukharenko, A. E., Vichare, A. S., & Rüffer, F. R. (2018). Current requirements and approaches to dosing of drugs in laboratory animals. Regular Studies and Examination of Medicines, 8(4), 207–217. https://doi.org/10.30895/1991-2919-2018-8-4-207-217. EDN: https://elibrary.ru/MIBSDR
- Khabriev, R. U. (2005). Guidelines for experimental (preclinical) study of new pharmacological substances (832 pp.). ISBN: 5 225 04219 8. EDN: https://elibrary.ru/QCIIOB
- Cai, E., Wu, R., Wu, Y., Gao, Y., Zhu, Y., & Li, J. (2024). A systematic review and meta analysis on the current status of anthelmintic resistance in equine nematodes: a global perspective. Molecular and Biochemical Parasitology, 257, 111600. https://doi.org/10.1016/j.molbiopara.2023.111600. EDN: https://elibrary.ru/KPCCES
- Esfahani, M. K. M., Alavi, S. E., Cabot, P. J., Islam, N., Izake, E. L., Koohi, M., et al. (2021). PEGylated mesoporous silica nanoparticles (MCM 41): a promising carrier for the targeted delivery of fenbendazole into prostate cancer cells. Pharmaceutics, 13, 1605. https://doi.org/10.3390/pharmaceutics13101605. EDN: https://elibrary.ru/IFDDTY
- Khalikov, S. S., Lokshin, B. V., Ilyin, M. M., Varlamova, A. I., Musaev, M. B., & Arhipov, A. I. (2019). Methods for obtaining solid dispersions of drugs and their properties. Russian Chemical Bulletin, 68(10), 1924–1932. https://doi.org/10.1007/s11172-019-2648-3. EDN: https://elibrary.ru/GVFLDV
- Khalikov, S. S. (2021). Mechanochemical technology for regulation of the solubility of anthelmintic drugs by using polymers. INEOS OPEN, 4(2), 53–60. https://doi.org/10.32931/io2108r. EDN: https://elibrary.ru/JOFSUX
- Lu, M., Wei, W., Xu, W., Polyakov, N. E., Dushkin, A. V., & Su, W. (2022). Preparation of DNC solid dispersion by a mechanochemical method with glycyrrhizic acid and polyvinylpyrrolidone to enhance bioavailability and activity. Polymers, 14(10), 2037. https://doi.org/10.3390/polym14102037. EDN: https://elibrary.ru/WWQSPD
- Melian, M. E., Paredes, A. J., Munguía, B., Colobbio, M., Ramos, J. C., Teixeira, R., et al. (2020). Nanocrystals of novel valerolactam fenbendazole hybrid with improved in vitro dissolution performance. AAPS PharmSciTech, 21, 1777. https://doi.org/10.1208/s12249-020-01777-y. EDN: https://elibrary.ru/DIQUWF
- Nielsen, M. K. (2022). Anthelmintic resistance in equine nematodes: current status and emerging trends. International Journal for Parasitology: Drugs and Drug Resistance, 20(September), 76–88. https://doi.org/10.1016/j.ijpddr.2022.10.005. EDN: https://elibrary.ru/NNLLTJ
- Riviere, J. E., & Papich, M. G. (2009). Veterinary pharmacology and therapeutics (9th ed., 1216 p.). Hoboken, NJ: Wiley Blackwell.
- Sun, Y., Chen, D., Pan, Y., Qu, W., Hao, H., Wang, X., et al. (2019). Nanoparticles for antiparasitic drug delivery. Drug Delivery, 26(1), 1206–1221. https://doi.org/10.1080/10717544.2019.1692968. EDN: https://elibrary.ru/ELCXZU
- Wiegand, H., & Finney, D. J. (1971). Probit analysis (3rd ed., XV, 333 pp.). Cambridge: Cambridge University Press. Biometrical Journal, 14(1), 72 (1972). https://doi.org/10.1002/bimj.19720140111
Supplementary files


