Ixodes ticks and cases of brucellosis in Tavush Province of Armenia: sustainable agriculture
- Authors: Grigoryan V.V.1, Tspnetsyan H.S.1, Grigoryan L.H.1, Abrahamyan V.V.1, Yeribekyan S.V.1, Petrosyan G.M.1, Pepoyan A.Z.1
-
Affiliations:
- Armenian National Agrarian University
- Issue: Vol 17, No 1 (2025)
- Pages: 544-563
- Section: Experience of Regions
- Published: 28.02.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/309469
- DOI: https://doi.org/10.12731/2658-6649-2025-17-1-1367
- EDN: https://elibrary.ru/FOULPV
- ID: 309469
Cite item
Full Text
Abstract
Background. Ticks are known to cause tick-borne zoonotic diseases (meta-zoonosis). On the other hand, several factors, such as animal gender and animal replacement, pet dogs/their owner associations as well as soil composition, have been reported to be potential risk factors for brucellosis at the animal level. Currently, scientific data is also being accumulated that proves the association between Ixodes ticks and brucellosis cases.
Purpose. The current study in the range of "The role of Ixodes ticks in the transmission of brucellosis" aims to study the prevalence of Ixodes ticks in Tavush Province of Armenia in association with the loci of outbreaks of brucellosis in Tavush.
Materials and methods. Fieldwork was conducted from January to December 2023 in the Berd Region of the Tavush Distinct. Ticks were gathered/quantified/prepared for analysis according to standard methodological guidelines. Flagging was conducted at intervals of 50–60 steps, yielding approximately 30 samples per geographic zone.
For the database creation on animal brucellosis cases during 1950-2020, archival data from relevant organizations and internet sources were studied.
Results. Through a comprehensive study, the occurrence of six tick species in the Berd region with diverse ecosystems, including plains, forests, subalpine, and alpine zones – Rhipicephalus annulatus, Rhipicephalus bursa, Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum and Hyalomma scupense—was documented.
Conclusion. The results of the present studies do not exclude the role of Ixodes ticks in the outbreaks of brucellosis cases in the region. The results are important for the development of strategies for zoonosis control as well as for the determination of pastures for livestock.
Keywords
About the authors
Valery V. Grigoryan
Armenian National Agrarian University
Author for correspondence.
Email: grigoryanvgv@mail.ru
ORCID iD: 0009-0000-0840-3961
PhD, Associate Professor, Senior Researcher at the Research Center of Veterinary and Veterinary Sanitary Expertise, Head of Department of Epidemiology and Parasitology
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Hrachya S. Tspnetsyan
Armenian National Agrarian University
Email: tspnetsyan@yahoo.com
Doctor of Economic Sciences, Vice-rector for Scientific Affairs
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Liana H. Grigoryan
Armenian National Agrarian University
Email: lianagrigoryan7878@mail.ru
ORCID iD: 0009-0008-8799-4568
PhD, Director of the Research Center of Veterinary and Veterinary Sanitary Expertise
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Viktor V. Abrahamyan
Armenian National Agrarian University
Email: viktorabrahamyan@gmail.com
ORCID iD: 0009-0005-2399-011X
Doctor of Veterinary Science, Professor, Lead Researcher at the Research Center of Veterinary and Veterinary Sanitary Expertise
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Spartak V. Yeribekyan
Armenian National Agrarian University
Email: vivarium2016@mail.ru
ORCID iD: 0009-0000-9340-7894
Veterinarian, Researcher at the Research Center of Veterinary and Veterinary Sanitary Expertise
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Gayane M. Petrosyan
Armenian National Agrarian University
Email: gayanemartinovna@gmail.com
ORCID iD: 0009-0009-7051-4043
PhD, Researcher at the Research Center of Veterinary and Veterinary Sanitary Expertise, Head of Department of Epidemiology and Parasitology
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of Armenia
Astghik Z. Pepoyan
Armenian National Agrarian University
Email: apepoyan@gmail.com
ORCID iD: 0000-0002-1935-5341
Doctor of Biological Sciences, Professor, Head of the Food Safety and Biotechnology, Animal Origin Raw Material and Product Processing divisions of the Scientific Research Institute of Food Science and Biotechnology
Armenia, 74, Teryan Str., Yerevan, 0009, Republic of ArmeniaReferences
- Harutyunyan, N., Kushugulova, A., Hovhannisyan, N., & Pepoyan, A. (2022). One Health probiotics as biocontrol agents: One Health tomato probiotics. Plants, 11(10), 1334. https://doi.org/10.3390/plants11101334
- Asoyan, V., Hovhannisyan, A., Mkrtchyan, A., Davidyants, M., Apresyan, H., Atoyan, L., & Niazyan, L. (2018). Evaluating the burden of brucellosis in hospitalized patients in Armenia, 2016. Online Journal of Public Health Informatics, 10(1), e62231. https://doi.org/10.5210/ojphi.v10i1.8891
- Grigoryan, V. V., Abrahamyan, V. V., Kazaryan, A. S., Yeribekyan, S. V., & Grigoryan, L. H. (2023). Species composition of watch pastures in special geographical regions of Tavush Province. Biological Journal of Armenia, 75, 188–192. https://doi.org/10.54503/0366-5119-2023.75.2-3-188
- Kerbabayev, E. B., & Tsuba, T. R. (2011). Ixodofauna of the Republic of Abkhazia and adjacent territories. Russian Parasitological Journal, (1), 18–26.
- Manvelyan, A., Balayan, M., Miralimova, S., Chistyakov, V., & Pepoyan, A. (2023). Biofilm formation and autoaggregation abilities of novel targeted aqua-probiotics. Functional Foods in Health and Disease, 13(4), 179–190. https://doi.org/10.31989/ffhd.v13i4.1093
- Mirzabekyan, S., Harutyunyan, N., Manvelyan, A., Malkhasyan, L., Balayan, M., Chistyakov, V., & Pepoyan, A. (2023). Fish probiotics: cell surface properties of fish intestinal lactobacilli and Escherichia coli. Microorganisms, 11(3), 595. https://doi.org/10.3390/microorganisms11030595
- Pepoyan, A. Z., Tsaturyan, V. V., Badalyan, M., Weeks, R., Kamiya, S., & Chikindas, M. L. (2020). Blood protein polymorphisms and gut bacteria: impact of probiotic Lactobacillus acidophilus strain Narine on salmonella carriage in sheep. Beneficial Microbes, 11(2), 183–190. https://doi.org/10.3920/BM2019.0138
- Pepoyan, A. Z., Balayan, M. H., Malkhasyan, L., Manvelyan, A., Bajanyan, T., Paronyan, R., & Tikomirov, N. (2019). Effects of probiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 and putative probiotic lactobacilli on DNA damage in the small intestine of Wistar rats in vivo. Probiotics & Antimicrobial Proteins, 11(3), 905–909. https://doi.org/10.1007/s12602-018-9491-y
- Pepoyan, A. Z., & Chikindas, M. L. (2019). Plant-associated and soil microbiota composition as a novel criterion for the environmental risk assessment of genetically modified plants. GM Crops & Food, 11(1), 47–53. https://doi.org/10.1080/21645698.2019.1703447
- Pepoyan, A. Z., Manvelyan, A. M., Balayan, M. H., Harutyunyan, N. A., Tsaturyan, V. V., Batikyan, H., Bren, A. B., Chistyakov, V., Weeks, R., & Chikindas, M. L. (2023). Tetracycline resistance of Escherichia coli isolated from water, human stool, and fish gills from the Lake Sevan basin. Letters in Applied Microbiology, 76(2), ovad021. https://doi.org/10.1093/lambio/ovad021
- Pepoyan, A. Z., Pepoyan, E. S., Galstyan, L., et al. (2021). The effect of immunobiotic/psychobiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 Narine on gut Prevotella in familial Mediterranean fever: gender-associated effects. Probiotics & Antimicrobial Proteins, 13(5), 1306–1315. https://doi.org/10.1007/s12602-021-09779-3
- Pepoyan, E., Marotta, F., Manvelyan, A., Galstyan, A., Stepanyan, L., Grigoryan, H., Grigoryan, L., Mikayelyan, M., Balayan, M., Harutyunyan, N., Mirzabekyan, S., Tsaturyan, V., Torok, T., & Pepoyan, A. (2024). Placebo-resistant gut bacteria: Akkermansia muciniphila spp. and familial Mediterranean fever disease. Frontiers in Cellular and Infection Microbiology, 14, 1336752. https://doi.org/10.3389/fcimb.2024.1336752
- Pepoyan, A. Z., Manvelyan, A. M., Balayan, M. H., et al. (2020). The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the host. Probiotics & Antimicrobial Proteins, 12, 1439–1450. https://doi.org/10.1007/s12602-020-09662-7
- Ruхyan, M., & Ohanyan, R. (2023). Effect of abiotic transformations on ixodid tick activity in mountain-forest landscapes of Armenia. Humanitarian Space. International Almanac, 12(5), 492–500. https://doi.org/10.24412/2226-0773-2023-12-5-492-500
- Sargsyan, L., Davtyan, K., Hann, K., Gasparyan, S., Davidyants, V., Shekoyan, V., et al. (2019). Acute and chronic brucellosis eleven-year audit from a tertiary hospital in Armenia. The Journal of Infection in Developing Countries, 13(5.1), 42–50. https://doi.org/10.3855/jidc.10934
- Serdyukov, G. V. (1956). Ixodid ticks fauna of the USSR: reference guide. Moscow: Academy of Sciences of the USSR. p. 121.
- Christinovskiy, P. I. (2009). Recommendations for identifying natural foci of animal babesiosis. Russian Parasitological Journal, (1), 109–115.
- Tsaturyan, V., Manvelyan, A., Balayan, M., Harutyunyan, N., Pepoyan, E., Torok, T., & Chikindas, M. (2023). Host genetics and gut microbiota composition: baseline gut microbiota composition as a possible prognostic factor for severity of COVID-19 in patients with familial Mediterranean fever disease. Frontiers in Microbiology, 14, 1107485. https://doi.org/10.3389/fmicb.2023.1107485
- Tsaturyan, V., Poghosyan, A., Toczylowski, M., & Pepoyan, A. (2022). Evaluation of malondialdehyde levels, oxidative stress and host-bacteria interactions: Escherichia coli and Salmonella Derby. Cells, 11(19), 2989. https://doi.org/10.3390/cells11192989
- Shevtsova, E., Vergnaud, G., Shevtsov, A., Shustov, A., Berdimuratova, K., Mukanov, K., et al. (2019). Genetic diversity of Brucella melitensis in Kazakhstan in relation to worldwide diversity. Frontiers in Microbiology, 10, 1897. https://doi.org/10.3389/fmicb.2019.01897
- Abdel-Shafy, S. (2018). Is the cattle tick Rhipicephalus annulatus Say, 1821 reared on the rabbit? Journal of Parasitic Diseases, 42, 297–302. https://doi.org/10.1007/s12639-018-1000-4
- Ahmed, S., Dávila, J. D., Allen, A., Haklay, M. M., Tacoli, C., & Fèvre, E. M. (2019). Does urbanization make emergence of zoonosis more likely? Evidence, myths and gaps. Environment and Urbanization, 31(2), 443–460. https://doi.org/10.1177/0956247819866124
- Al Dahouk, S., Köhler, S., Occhialini, A., Jiménez de Bagüés, M. P., Hammerl, J. A., Eisenberg, T., et al. (2017). Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Scientific Reports, 7, 44420. https://doi.org/10.1038/srep44420
- Ali, S., Akhter, S., Neubauer, H., Melzer, F., Khan, I., Abatih, E. N., et al. (2017). Seroprevalence and risk factors associated with bovine brucellosis in the Potohar Plateau, Pakistan. BMC Research Notes, 10(1), 73. https://doi.org/10.1186/s13104-017-2394-2
- Andreotti, R., Pérez de León, A. A., Dowd, S. E., Guerrero, F. D., Bendele, K. G., & Scoles, G. A. (2011). Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiology, 11, 6. https://doi.org/10.1186/1471-2180-11-6
- Dantas-Torres, F., Latrofa, M. S., Annoscia, G., Giannelli, A., Parisi, A., & Otranto, D. (2013). Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. Parasites & Vectors, 6, 213. https://doi.org/10.1186/1756-3305-6-213
- Elhachimi, L., Valcárcel, F., Olmeda, A. S., Elasatey, S., Khattat, S. E., & Daminet, S., et al. (2021). Rearing of Hyalomma marginatum (Acarina: Ixodidae) under laboratory conditions in Morocco. Experimental and Applied Acarology, 84(4), 785–794. https://doi.org/10.1007/s10493-021-00641-3
- Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. Collection, registration, and preparation for laboratory research of blood-sucking arthropods in natural foci of dangerous infectious diseases: Guidelines. Moscow, 2011, 55 p.
- González-Espinoza, G., Arce-Gorvel, V., Mémet, S., & Gorvel, J. P. (2021). Brucella: reservoirs and niches in animals and humans. Pathogens, 10(2), 186. https://doi.org/10.3390/pathogens10020186
- Grech-Angelini, S., Stachurski, F., Lancelot, R., Boissier, J., Allienne, J. F., Gharbi, M., & Uilenberg, G. (2016). First report of the tick Hyalomma scupense (natural vector of bovine tropical theileriosis) on the French Mediterranean island of Corsica. Veterinary Parasitology, 216, 33–37. https://doi.org/10.1016/j.vetpar.2015.11.015
- Huy, T. X., Reyes, A. W., Hop, H. T., Arayan, L. T., Min, W., & Lee, H. J., et al. (2017). Intracellular trafficking modulation by ginsenoside Rg3 inhibits Brucella abortus uptake and intracellular survival within RAW 264.7 cells. Journal of Microbiology and Biotechnology, 27(3), 616–623. https://doi.org/10.4014/jmb.1609.09060
- Jamil, T., Melzer, F., Khan, I., Iqbal, M., Saqib, M., Hammad Hussain, M., et al. (2019). Serological and molecular investigation of Brucella species in dogs in Pakistan. Pathogens, 8(4), 294. https://doi.org/10.3390/pathogens8040294
- Kapo, N., Zuber Bogdanović, I., Gagović, E., Žekić, M., & Veinović, G. (2024). Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasites & Vectors, 17(1), 45. https://doi.org/10.1186/s13071-023-06116-1
- Ma, R., Li, C., Gao, A., et al. (2024). Evidence-practice gap analysis in the role of ticks in brucellosis transmission: a scoping review. Infectious Diseases of Poverty, 13, 3. https://doi.org/10.1186/s40249-023-01170-4
- Matei, I. A., Ionică, A. M., Corduneanu, A., Domșa, C., & Sándor, A. D. (2021). The presence of Ehrlichia canis in Rhipicephalus bursa ticks collected from ungulates in Continental Eastern Europe. Journal of Veterinary Research, 65, 271–275. https://doi.org/10.2478/jvetres-2021-0044
- Mendoza-Roldan, J. A., Mendoza-Roldan, M. A., & Otranto, D. (2021). Reptile vector-borne diseases of zoonotic concern. International Journal for Parasitology: Parasites and Wildlife, 15, 132–142. https://doi.org/10.1016/j.ijppaw.2021.04.007
- Scholz, H., Hubalek, Z., Nesvadbova, J., Tomaso, H., Vergnaud, G., Le Flèche, et al. (2008). Isolation of Brucella microti from soil. Emerging Infectious Diseases, 14(8), 1316–1317. https://doi.org/10.3201/eid1408.080286
- Springer, A., Glass, A., Topp, A. K., & Strube, C. (2020). Zoonotic tick-borne pathogens in temperate and cold regions of Europe—a review on the prevalence in domestic animals. Frontiers in Veterinary Science, 10, 604910. https://doi.org/10.3389/fvets.2020.604910
- Statistical Committee of the Republic of Armenia. (2022). Social-demographic sector. Retrieved from https://armstat.am/file/article/sv_04_22r_590.pdf
- Wang, H., Hoffman, C., Yang, X., Clapp, B., & Pascual, D. W. (2020). Targeting resident memory T-cell immunity culminates in pulmonary and systemic protection against Brucella infection. PLoS Pathogens, 16(1), e1008176. https://doi.org/10.1371/journal.ppat.1008176
- Zhang, F., Li, Z., Jia, B., Zhu, Y., Pang, P., Zhang, C., & Ding, J. (2019). The immunogenicity of OMP31 peptides and its protection against Brucella melitensis infection in mice. Scientific Reports, 9(1), 3512. https://doi.org/10.1038/s41598-019-40084-w
Supplementary files
