Impact of chronic kidney disease on the course and outcome of COVID-19

Cover Page

Cite item

Full Text

Abstract

COVID-19 is primarily a respiratory disease. However, patients with COVID-19 are at high risk for acute kidney injury or exacerbation of preexisting kidney disease, especially those with comorbidities such as hypertension, coronary artery disease, chronic liver disease, chronic kidney disease, and malignancies. We reviewed studies that assessed the association between chronic kidney disease and SARS-CoV-2 coronavirus infection and infection outcomes, including hospitalization, severe COVID-19, need for intensive care, COVID-19 progression, and death. The studies showed varied and often contradictory results, as the baseline data differ in many parameters, such as the period of the pandemic, quality and size of the sample, and degree of comorbidity. Nevertheless, the studies consistently revealed that chronic kidney disease is an unfavorable factor with regard to SARS-CoV-2 infection. Furthermore, concomitant chronic kidney disease predisposes patients with COVID-19 to severe COVID-19, viral pneumonia, development of acute respiratory distress syndrome, acute kidney injury, and other complications, which in turn are negative prognostic factors for mortality. Patients with chronic kidney disease who survived COVID-19 are more likely to develop post-COVID syndromes with various persistent or recurrent symptoms than convalescents without renal comorbidity. These patients require long-term monitoring and optimization of therapy and are priority for vaccination.

About the authors

Andrey M. Sarana

Saint-Petersburg State University; Health Committee of the Administration of Saint Petersburg

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-code: 7922-2751

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 199034 Saint Petersburg; 191025 Saint Petersburg

Sergey G. Shcherbak

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 199034 Saint Petersburg; 9B, Borisova street, 197706 Saint Petersburg, Sestroretsk

Dmitry A. Vologzhanin

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Medicine)

Russian Federation, 199034 Saint Petersburg; 9B, Borisova street, 197706 Saint Petersburg, Sestroretsk

Aleksandr S. Golota

Saint-Petersburg City Hospital № 40 of Kurortny District

Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 9B, Borisova street, 197706 Saint Petersburg, Sestroretsk

Tatyana A. Kamilova

Saint-Petersburg City Hospital № 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biological)

Russian Federation, 9B, Borisova street, 197706 Saint Petersburg, Sestroretsk

Sergey V. Kadin

My Medical Center LLC

Email: svkadin@yandex.ru
ORCID iD: 0000-0003-1228-1914
SPIN-code: 9302-5964

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Quintana-Lopez JM, Rodríguez L, Portuondo J, et al.; COVID-Health Basque Country Research Group. Relevance of comorbidities for main outcomes during different periods of the COVID-19 pandemic. Influenza Other Respir Viruses. 2024;18(1):e13240. EDN: YYWNUM doi: 10.1111/irv.13240
  2. Chronic Kidney Disease in the United States, 2021. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2021. Available from: https://nephu.org/wp-content/uploads/2019/09/Chronic-Kidney-Disease-in-the-US-2021-h.pdf. Accessed: 15.07.2024.
  3. KDIGO guidelines. KDIGO Clinical practice guideline for acute kidney injury [March 2012]. Vol. 2, Issue 1. Available from: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf. Accessed: 15.07.2024.
  4. Jdiaa SS, Mansour R, El Alayli A, et al. COVID-19 and chronic kidney disease: An updated overview of reviews. J Nephrol. 2022;35(1):69–85. EDN: TJNCQX doi: 10.1007/s40620-021-01206-8
  5. Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi: 10.1016/j.kint.2020.03.005
  6. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966
  7. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi: 10.1038/s41586-020-2521-4
  8. Schiffl H, Lang SM. Long-term interplay between COVID-19 and chronic kidney disease. Int Urol Nephrol. 2023;55(8):1977–1984. EDN: HFTSXM doi: 10.1007/s11255-023-03528-x
  9. Chung EY, Palmer SC, Natale P, et al. Incidence and outcomes of COVID-19 in people with CKD: A systematic review and meta-analysis. Am J Kidney Dis. 2021;78(6):804–815. doi: 10.1053/j.ajkd.2021.07.003
  10. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol. 2020;52(6):1193–1194. EDN: FABBKA doi: 10.1007/s11255-020-02451-9
  11. Flythe JE, Assimon MM, Tugman MJ, et al. Characteristics and outcomes of individuals with pre-existing kidney disease and COVID-19 admitted to intensive care units in the United States. Am J Kidney Dis. 2021;77(2):190–203.e191. doi: 10.1053/j.ajkd.2020.09.003
  12. Dorjee K, Kim H, Bonomo E, Dolma R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One. 2020;15(12):e0243191. EDN: QPWWFK doi: 10.1371/journal.pone.0243191
  13. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. doi: 10.1136/bmj.j4008
  14. Ko JY, Danielson ML, Town M, et al. Risk factors for COVID-19-associated hospitalization: COVID-19-associated hospitalization surveillance network and behavioral risk factor surveillance system. Clin Infect Dis. 2021;72(11):e695–e703. doi: 10.1093/cid/ciaa1419
  15. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–833. doi: 10.1016/S2213-8587(20)30271-0
  16. Degarege A, Naveed Z, Kabayundo J, Brett-Major D. Heterogeneity and risk of bias in studies examining risk factors for severe illness and death in COVID-19: A systematic review and meta-analysis. Pathogens. 2022;11(5):563. EDN: EZKLSA doi: 10.3390/pathogens11050563
  17. Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020;14(5):1017–1025. doi: 10.1016/j.dsx.2020.06.064
  18. Xiao W, Xu J, Liang X, et al. Relationship between chronic kidney disease and adverse outcomes of coronavirus disease 2019: A meta-analysis based on adjusted risk estimates. Int Urol Nephrol. 2021;53(8):1723–1727. doi: 10.1007/s11255-020-02748-9
  19. Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med. 2020;288(4): 469–476. doi: 10.1111/joim.13119
  20. Agur T, Ben-Dor N, Goldman S, et al. Antibody response to mRNA SARS-CoV-2 vaccine among dialysis patients: A prospective cohort study. Nephrol Dial Transplant. 2021:gfab155. doi: 10.1093/ndt/gfab155
  21. Grupper A, Sharon N, Finn T, et al. Humoral response to the Pfizer BNT162b2 vaccine in patients undergoing maintenance hemodialysis. Clin J Am Soc Nephrol. 2021;16(7):1037–1042. doi: 10.2215/CJN.03500321
  22. Jakopin E, Knehtl M, Hojs NV, et al. Treatment of acute kidney injury with continuous renal replacement therapy and cytokine adsorber (CytoSorb) in critically ill patients with COVID-19. Ther Apher Dial. 2024. doi: 10.1111/1744-9987.14182
  23. Filev R, Rostaing L, Lyubomirova M, et al. COVID-19 Infection in chronic kidney disease patients in Bulgaria: Risk factors for death and acute kidney injury. J Pers Med. 2022;12(10):1676. EDN: RMHAER doi: 10.3390/jpm12101676
  24. Hirsch JS, Ng JH, Ross DW, et al.; Northwell COVID-19 research consortium and the northwell nephrology COVID-19 research consortium. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209–218. doi: 10.1016/j.kint.2020.05.006
  25. Fisher M, Neugarten J, Bellin E, et al. AKI in hospitalized patients with and without COVID-19: A comparison study. J Am Soc Nephrol. 2020;31(9):2145–2157. doi: 10.1681/ASN.2020040509
  26. Filev R, Lyubomirova M, Bogov B, et al. Post-acute sequelae of SARS-CoV-2 infection (PASC) for patients-3-year follow-up of patients with chronic kidney disease. Biomedicines. 2024;12(6):1259. doi: 10.3390/biomedicines12061259
  27. Chan L, Chaudhary K, Saha A, et al.; on behalf of the Mount Sinai COVID Informatics Center (MSCIC). AKI in hospitalized patients with COVID-19. J Am Soc Nephrol. 2021;32(1):151–160. doi: 10.1681/ASN.2020050615
  28. Enikeev D, Taratkin M, Efetov S, et al. Acute kidney injury in COVID-19: Are kidneys the target or just collateral damage? A comprehensive assessment of viral RNA and AKI rate in patients with COVID-19. Curr Opin Urol. 2021;31(4):363–368. EDN: RMZSBV doi: 10.1097/MOU.0000000000000901
  29. Mathew S, Ramaswamy S, Shiji P.V., et al. Retrospective analysis of acute kidney injury in COVID-19 infection: A single-center study from Kerala. Cureus. 2024;16(6):e61772. doi: 10.7759/cureus.61772
  30. Xiong F, Tang H, Liu L, et al. Clinical characteristics of and medical interventions for COVID-19 in hemodialysis patients in wuhan, China. J Am Soc Nephrol. 2020;31(7):1387–1397. doi: 10.1681/ASN.2020030354
  31. Choi H, Kim AY, Park I, et al. COVID-19 infection in patients with end-stage kidney disease undergoing renal replacement therapies in Korea. Kidney Res Clin Pract. 2024. EDN: IOQOQY doi: 10.23876/j.krcp.23.280
  32. Bae JH, Choi SK, Kim NH, et al. Use of renin-angiotensin-aldosterone system inhibitors and severe COVID-19 outcomes in patients with hypertension: A nationwide cohort study. Diabetes Metab J. 2021;45(3):430–438. EDN: DTTTGW doi: 10.4093/dmj.2020.0279
  33. Lopes RD, Macedo AV, de Barros E, et al. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: A randomized clinical trial. JAMA. 2021;325(3):254–264. doi: 10.1001/jama.2020.25864
  34. Bauer A, Schreinlechner M, Sappler N, et al. Discontinuation versus continuation of renin-angiotensin-system inhibitors in COVID-19 (ACEI-COVID): A prospective, parallel group, randomised, controlled, open-label trial. Lancet Respir Med. 2021;9(8):863–872. doi: 10.1016/S2213-2600(21)00214-9
  35. Tereshchenko LG, Johnson K, Khayyat-Kholghi M, et al. Rate of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers use and the number of COVID-19-confirmed cases and deaths. Am J Cardiol. 2022;165:101–108. EDN: YAMGHX doi: 10.1016/j.amjcard.2021.10.050
  36. Theodorakopoulou MP, Alexandrou ME, Boutou AK, et al. Renin-angiotensin system blockers during the COVID-19 pandemic: An update for patients with hypertension and chronic kidney disease. Clin Kidney J. 2021;15(3):397–406. doi: 10.1093/ckj/sfab272
  37. Kaur U, Chakrabarti SS, Patel TK. Renin-angiotensin-aldosterone system blockers and region-specific variations in COVID-19 outcomes: Findings from a systematic review and meta-analysis. Ther Adv Drug Saf. 2021;12:20420986211011345. doi: 10.1177/20420986211011345
  38. Singh R, Rathore SS, Khan H, et al. Mortality and severity in COVID-19 patients on ACEIs and ARBs: A systematic review, meta-analysis, and meta-regression analysis. Front Med (Lausanne). 2022;8:703661. EDN: ICIYDD doi: 10.3389/fmed.2021.703661
  39. Morales DR, Conover MM, You SC, et al. Renin-angiotensin system blockers and susceptibility to COVID-19: An international, open science, cohort analysis. Lancet Digit Health. 2021;3(2): e98–e114. EDN: VSGSSL doi: 10.1016/S2589-7500(20)30289-2
  40. Smith SM, Desai RA, Walsh MG, et al. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and COVID-19-related outcomes: A patient-level analysis of the PCORnet blood pressure control lab. Am Heart J Plus. 2022;13:100112. EDN: DBLBYZ doi: 10.1016/j.ahjo.2022.100112
  41. Filev R, Rostaing L, Lyubomirova M, et al. Renin-angiotensin-aldosterone system blockers in Bulgarian COVID-19 patients with or without chronic kidney disease. Medicine (Baltimore). 2022;101(48):e31988. EDN: ISCDHC doi: 10.1097/MD.0000000000031988
  42. Lee SA, Park R, Yang JH, et al. Increased risk of acute kidney injury in coronavirus disease patients with renin-angiotensin-aldosterone-system blockade use: A systematic review and meta-analysis. Sci Rep. 2021;11(1):13588. doi: 10.1038/s41598-021-92323-8
  43. Oussalah A, Gleye S, Clerc Urmes I, et al. Long-term ACE inhibitor/ARB use is associated with severe renal dysfunction and acute kidney injury in patients with severe COVID-19: Results from a referral center cohort in the Northeast of France. Clin Infect Dis. 2020;71(9):2447–2456. doi: 10.1093/cid/ciaa677
  44. Banwait R, Singh D, Blanco A, et al. Renin-angiotensin-aldosterone system blockers prior to hospitalization and their association with clinical outcomes in coronavirus disease 2019 (COVID-19). Cureus. 2021;13(2):e13429. doi: 10.7759/cureus.13429
  45. Bowe B, Xie Y, Xu E, Al-Aly Z. Kidney outcomes in long COVID. J Am Soc Nephrol. 2021;32(11):2851–2862. doi: 10.1681/ASN.2021060734
  46. McAlister FA, Nabipoor M, Wang T, Bakal JA. Emergency visits or hospitalizations for cardiovascular diagnoses in the post-acute phase of COVID-19. JACC Adv. 2023;2(6):100391. doi: 10.1016/j.jacadv.2023.100391
  47. Chen Z, Zhang F, Hu W, et al. Laboratory markers associated with COVID-19 progression in patients with or without comorbidity: A retrospective study. J Clin Lab Anal. 2021;35(1):e23644. doi: 10.1002/jcla.23644
  48. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022;28(7):1461–1467. EDN: UKRBUW doi: 10.1038/s41591-022-01840-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».