ANOMALIES ON THE TEMPERATURE DEPENDENCE OF THE MAGNETIC SUSCEPTIBILITY OF GADOLINIUM AND TERBIUM NANOCOMPOSITE MANGANATES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The low-temperature magnetic properties of gadolinium and terbium nanocomposite manganates have been studied. The composites were obtained by introducing manganate particles into the interspherical voids of artificial opal matrices. The temperature dependences of magnetic susceptibility, hysteresis loops, and magnetization curves were measured. Anomalies in the temperature dependences of magnetic susceptibility are discussed.

About the authors

A. B. Rinkevich

M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Science

Email: rin@imp.uran.ru
Ekaterinburg, Russia

O. V. Nemytova

M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Science

Email: rin@imp.uran.ru
Ekaterinburg, Russia

D. V. Perov

M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Science

Email: rin@imp.uran.ru
Ekaterinburg, Russia

M. S. Stenina

M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Science

Author for correspondence.
Email: rin@imp.uran.ru
Ekaterinburg, Russia

References

  1. Van den Brink J., Khomskii D.I. Multiferroicity due to charge ordering // J. Phys.: Condens. Matter. 2008. V. 20. № 43. 434217. https://doi.org/10.1088/0953-8984/20/43/434217
  2. Санина В.А., Ханнанов Б.Х., Головенчиц Е.И. Магнитная динамика областей фазового расслоения в мультиферроиках GdMn2O5 и Gd0.8Ce0.2Mn2O5 // ФТТ. 2017. Т. 59. № 10. С. 1932–1939. https://doi.org/10.21883/FTT.2017.10.44961.135
  3. Zheng S.H., Gong J.J., Li Y.Q., Li C.F., Tang Y.S., Zhang J.H., Lin L., Yan Z.B., Jiang X.P., Cheong S.W., Liu J.-M. Abnormal dependence of multiferroicity on high-temperature electro-poling in GdMn2O5 // J. Appl. Phys. 2019. V. 126. № 17. 174104. https://doi.org/10.1063/1.5120971
  4. Gardner P.P., Wilkinson C., Forsyth J.B., Wanklyn B.M. The magnetic structures of the rare-earth manganates ErMn2O5 and TbMn2O5 // J. Phys. C: Solid State Phys. 1988. V. 21. № 33. P. 5653–5661. https://doi.org/10.1088/0022–3719/21/33/009
  5. Vecchini C., Bombardi A., Chapon L.C., Lee N., Radaelli P.G., Cheong S-W. Magnetic phase diagram and ordered ground state of GdMn2O5 multiferroic studied by x-ray magnetic scattering // J. Phys.: Conf. Ser. 2014. V. 519. 012004. https://doi.org/10.1088/1742-6596/519/1/012004
  6. Попов Ю.Ф., Кадомцева А.М., Воробьев Г.П., Кротов С.С., Камилов К.И., Лукина М.М. Влияние Gd–Mn-обмена на индуцированные сильным магнитным полем фазовые переходы в GdMn2O5 // ФТТ. 2003. Т. 45. № 11. С. 2155–2159.
  7. Chapon L.C., Blake G.R., Gutmann M.J., Park S., Hur N., Radaelli P.G., Cheong S-W. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5 // Phys. Rev. Lett. 2004. V. 93. № 17. 177402. https://doi.org/10.1103/PhysRevLett.93.177402
  8. Men’shenin V.V. Magnetic phase transitions and electric polarization in RMn2O5 oxides // Phys. Met. Metallogr. 2018. V. 119. № 13. P. 1263–1266. https://doi.org/10.1134/S0031918X18130185
  9. Tolédano P., Schranz W., Krexner G. Induced ferroelectric phases in TbMn2O5 // Phys. Rev. B. 2009. V. 79. № 14. 144103. https://doi.org/10.1103/PhysRevB.79.144103
  10. Vaunat A., Balédent V., Petit S., Roy P., Brubach J.B., Giri G., Rebolini E., Steffens P., Raymond S., Berrod Q., Lepetit M.B., Foury-Leylekian P. Evidence for an electromagnon in GdMn2O5: A multiferroic with a large electric polarization // Phys. Rev. B. 2021. V. 103. № 17. 174434. https://doi.org/10.1103/PhysRevB.103.174434
  11. Wang H., Wang F., Yang M., Chang Y., Shi M., Li L., Liu J.-M., Wang J., Dong S., Lu C. Observation of universal topological magnetoelectric switching in multiferroic GdMn2O5 // Phys. Rev. Lett. 2025. V. 134. № 1. 016708. https://doi.org/10.1103/PhysRevLett.134.016708
  12. Sanina V.A., Golovenchits E.I., Khannanov B.Kh., Scheglov M.P., Zalesskii V.G. Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5 // Письма в ЖЭТФ. 2014. Т. 100. № 6. С. 451–456. https://doi.org/10.7868/S0370274X14180118
  13. Khannanov B.Kh., Sanina V.A., Golovenchits E.I., Scheglov M.P. Room-temperature electric polarization induced by phase separation in multiferroic GdMn2O5 // Письма в ЖЭТФ. 2016. Т. 103. № 4. С. 274–279. https://doi.org/10.7868/S0370274X1604007X
  14. Narayanan N., Graham P.J., Rovillain P., O’Brien J., Bertinshaw J., Yick S., Hester J., Maljuk A., Souptel D., Büchner B., Argyriou D., Ulrich C. Reduced crystal symmetry as origin of the ferroelectric polarization within the incommensurate magnetic phase of TbMn2O5 // Phys. Rev. B. 2019. V. 105. № 21. 214413. https://doi.org/10.1063/1.5120971
  15. Rinkevich A.B., Burkhanov A.M., Samoi-lovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices // Russ. J. Gen. Chem. 2013. V. 83. № 11. P. 2148–2158. https://doi.org/10.1134/S1070363213110340
  16. Bukhari H., Kain Th., Schiebl M., Shuvaev A., Pimenov An., Kuzmenko A.M., Wang X., Cheong S.-W., Ahmad J., Pimenov A. Magnetoelectric phase diagrams of multiferroic GdMn2O5 // Phys. Rev. B. 2016. V. 94. № 17. 174446. https://doi.org/10.1103/PhysRevB.94.174446

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).