Метод приближенного решения уравнений в частных производных

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматривается уравнение в частных производных вида

ut=f(t,x,y,u,ux,uy,2ux2,2uy2,2uxy),  (x,y)D2,  t0,

относительно неизвестной функции u, определенной в области D пространственных переменных x,y и при t0. Предлагается метод нахождения приближенного решения. Рассматриваемое уравнение заменяется приближенным за счет введения оператора сдвига S:DD, позволяющего заменить на каждом шаге вычислений неизвестные значения функции u(x,y,t) в правой части значениями u(S(x,y),t), полученными на предыдущем шаге. Идея предлагаемого метода восходит к идее метода Тонелли, известного для дифференциальных уравнений относительно функций одной переменной (с обычными, а не частными производными). Достоинствами предлагаемого метода являются простота получаемого итерационного соотношения и возможности применений к широкому классу уравнений и краевых условий. В статье получены итерационные формулы решения краевой задачи с условием Дирихле по пространственным переменным и с начальным или с краевым условием по переменной t. На основании предложенного метода получено приближенное решение конкретной начально-краевой задачи для уравнения теплопроводности в квадратной области.

Полный текст

Введение

Краевыми задачами для дифференциальных уравнений в частных производных описываются многие физические процессы, в том числе процессы теплопроводности, диффузии, механики сплошных сред и другие процессы с распределенными параметрами (см. [1]). Точные аналитические решения таких задач возможны лишь для ограниченного класса уравнений и граничных условий. Приближенное определение решений уравнений в частных производных является более сложной проблемой, чем соответствующая задача для обыкновенных дифференциальных уравнений. Очевидно, что определить функцию нескольких переменных сложнее, чем функцию одного аргумента. Но, кроме этой очевидной трудности, приближенное нахождение решений уравнений в частных производных осложнено еще и некорректностью ряда задач математической физики (см. [2]).

Основы аналитических и численных методов решения дифференциальных уравнений в частных производных заложены в известной монографии Л. В. Канторовича и В. И. Крылова [3]. За прошедшие со времени издания этой книги годы приближенным решениям уравнений в частных производных были посвящены многочисленные работы. Значительные успехи достигнуты в развитии теории А. Н. Тихонова [4] решения некорректных задач (см., например, работы [5, 6] и их библиографические списки). В приложениях наиболее популярными являются различные сеточные методы (см., например, монографию [7] и работу [8]), методы представления решений в виде рядов (см., например, [9, главы X, XIII, XVII], методы сведения к дифференциально-разностным уравнениям (см., например, [10]).

Мы предлагаем метод иного типа, приводящий заданное уравнение к приближенному, аналитическое решение которого выписывается в явном виде. К достоинствам предлагаемого метода можно отнести простоту итерационного соотношения, а также возможности применений к широкому классу уравнений и краевых условий. Например, по переменной времени можно рассматривать не только начальную, но и краевые задачи.

Идея предлагаемого метода восходит к идее метода Тонелли (см., например, [11]), известного для дифференциальных и функционально-дифференциальных уравнений относительно функций одной переменной (с обычными, а не частными производными). Для получения методом Тонелли приближенного решения уравнения

x ˙ (t)=f(t,x(t)),t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaca GaaGikaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaamiDaiaaiYca caWG4bGaaGikaiaadshacaaIPaGaaGykaiaaiYcacaaMe8UaaGjbVl aadshacaaI+aGaaGimaiaaiYcaaaa@4A8D@

при заданном начальном условии x(0)= α 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaaIWaGaaGykaiaai2dacqaHXoqydaWgaaWcbaGaaGimaaqabaGc caaISaaaaa@3F2F@  это уравнение заменяют уравнением

x ˙ (t)=f(t,x(tτ)),t>0,x(s)=α(s),s(τ,0], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaca GaaGikaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaamiDaiaaiYca caWG4bGaaGikaiaadshacqGHsislcqaHepaDcaaIPaGaaGykaiaaiY cacaaMe8UaaGjbVlaadshacaaI+aGaaGimaiaaiYcacaaMe8UaaGjb VlaadIhacaaIOaGaam4CaiaaiMcacaaI9aGaeqySdeMaaGikaiaado hacaaIPaGaaGilaiaaysW7caaMe8Uaam4CaiabgIGiolaaiIcacqGH sislcqaHepaDcaaISaGaaGimaiaai2facaaISaaaaa@6533@  (0.1)

с достаточно малым запаздыванием τ>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG OpaiaaicdacaaIUaaaaa@3C06@  Здесь α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  некоторая определенная на (τ,0] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgk HiTiabes8a0jaaiYcacaaIWaGaaGyxaaaa@3DC2@  функция такая, что α(0)= α 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaiaaicdacaaIPaGaaGypaiabeg7aHnaaBaaaleaacaaIWaaabeaa kiaai6caaaa@3FD3@  Решение такого уравнения определяется последовательно на каждом полуинтервале J n =( t n1 , t n ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=La8knaaBaaaleaa caWGUbaabeaakiaai2dacaaIOaGaamiDamaaBaaaleaacaWGUbGaey OeI0IaaGymaaqabaGccaaISaGaamiDamaaBaaaleaacaWGUbaabeaa kiaai2facaaISaaaaa@4F71@  где t 0 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiaai2dacaaIWaGaaGilaaaa@3C27@   t n =nτ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaakiaai2dacaWGUbGaeqiXdqNaaGilaaaa@3E5E@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  следующими соотношениями. Положим x 0 (t)=α(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaHXoqy caaIOaGaamiDaiaaiMcacaaISaaaaa@41CC@   t(τ,0] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiIcacqGHsislcqaHepaDcaaISaGaaGimaiaai2faaaa@403F@  и обозначим через x n : J n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbaabeaakiaaiQdatuuDJXwAKzKCHTgD1jharyqr1ngB PrgigjxyRrxDYbacfaGae8xcWR0aaSbaaSqaaiaad6gaaeqaaOGaey OKH46efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGF DeIuaaa@5549@  решение рассматриваемой задачи Коши для уравнения (0.1) на полуинтервале J n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=La8knaaBaaaleaa caWGUbaabeaakiaaiYcaaaa@466F@   n=1,2,. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGjcVlaai6caaaa@400F@  Тогда решением на следующем полуинтервале J n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=La8knaaBaaaleaa caWGUbGaey4kaSIaaGymaaqabaaaaa@474C@  будет функция

x n+1 (t)= x n ( t n )+ t n t f(s, x n (sτ))ds,t J n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccaaIOaGaamiDaiaaiMca caaI9aGaamiEamaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bWaaS baaSqaaiaad6gaaeqaaOGaaGykaiabgUcaRmaapedabeWcbaGaamiD amaaBaaabaGaamOBaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamOzai aaiIcacaWGZbGaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaI OaGaam4CaiabgkHiTiabes8a0jaaiMcacaaIPaGaaGjcVlaadsgaca WGZbGaaGilaiaaysW7caaMe8UaamiDaiabgIGioprr1ngBPrMrYf2A 0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFjaVsdaWgaaWcbaGaam OBaiabgUcaRiaaigdaaeqaaOGaaGOlaaaa@6FB1@

Для получения приближений к уравнению в частных производных мы предлагаем введение аналогов запаздывания MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  малого параметра не по переменной времени t, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY caaaa@39B6@  а по пространственным переменным.

1. Метод приближенного решения начально-краевой задачи

Для простоты будем рассматривать уравнение, содержащее частную производную первого порядка по времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  и частные производные не выше второго порядка по двум пространственным переменным x,y. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiY cacaWG5bGaaGOlaaaa@3B70@

Будем обозначать через |M | 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaad2 eacaaI8bWaaSbaaSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae8xhHi1aaWbaaeqabaGaaGOmaaaaaeqaaaaa@46A7@  норму вектора M 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaOGaaGilaaaa@46BE@  через μ(A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ikaiaadgeacaaIPaaaaa@3BE8@  меру (площадь) множества A 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgk Oimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaaaa@466A@  и через A ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGbbaaaaaa@38DE@  замыкание этого множества в 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaaikdaaaGccaaIUaaaaa@446A@

Пусть задана область D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  на плоскости 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaaikdaaaGccaaISaaaaa@4468@  имеющая границу Γ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaicdaaeqaaOGaaGOlaaaa@3B17@  Положим D ¯ =D Γ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGebaaaiaai2dacaWGebGaeyOkIGSaeu4KdC0aaSbaaSqaaiaaicda aeqaaOGaaGOlaaaa@3F21@  В области D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  рассмотрим следующую начально-краевую задачу

u t =f(t,x,y,u, u x , u y , 2 u x 2 , 2 u y 2 , 2 u xy ),t>0,(x,y)D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaI9aGaamOzaiaaiIca caWG0bGaaGilaiaadIhacaaISaGaamyEaiaaiYcacaWG1bGaaGilam aalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadIhaaaGaaGilamaa laaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadMhaaaGaaGilamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi 2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGilamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadMha daahaaWcbeqaaiaaikdaaaaaaOGaaGilamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIhacqGHciIT caWG5baaaiaaiMcacaaISaGaaGjbVlaaysW7caWG0bGaaGOpaiaaic dacaaISaGaaGjbVlaaysW7caaIOaGaamiEaiaaiYcacaWG5bGaaGyk aiabgIGiolaadseacaaISaaaaa@7A03@  (1.1)

u | t=0 =ϑ(x,y),(x,y)D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY hadaWgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2dacqaHrpGs caaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiYcacaaMe8UaaGjbVl aaiIcacaWG4bGaaGilaiaadMhacaaIPaGaeyicI4SaamiraiaaiYca aaa@4E25@  (1.2)

u | (x,y) Γ 0 = φ 0 (t),t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY hadaWgaaWcbaGaaGikaiaadIhacaaISaGaamyEaiaaiMcacqGHiiIZ cqqHtoWrdaWgaaqaaiaaicdaaeqaaaqabaGccaaI9aGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaysW7 caaMe8UaamiDaiaai6dacaaIWaGaaGOlaaaa@4EEF@  (1.3)

Здесь f,ϑ, φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiY cacqaHrpGscaaISaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaaaa@3EA9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные непрерывные функции.

Пусть задано τ>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG OpaiaaicdacaaIUaaaaa@3C06@  Определим отображение S τ : D ¯ D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGOoamaanaaabaGaamiraaaacqGHsgIR caWGebGaaGilaaaa@3FE4@  удовлетворяющее нижеперечисленным условиям:

  • отображение S τ : D ¯ D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGOoamaanaaabaGaamiraaaacqGHsgIR caWGebaaaa@3F2E@  инъективно;
  • для любой точки MD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Giolaadseaaaa@3B26@  выполнено | S τ MM | 2 τ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaado fadaWgaaWcbaGaeqiXdqhabeaakiaad2eacqGHsislcaWGnbGaaGiF amaaBaaaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab=1risnaaCaaabeqaaiaaikdaaaaabeaakiabgsMiJkabes8a 0jaaiUdaaaa@4F82@
  •  при любом n=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC6@  множество S τ n (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqaHepaDaeaacaWGUbaaaOGaaGikaiaadseacaaIPaaaaa@3DFC@  является областью с границей S τ n ( Γ 0 ); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqaHepaDaeaacaWGUbaaaOGaaGikaiabfo5ahnaaBaaaleaa caaIWaaabeaakiaaiMcacaaI7aaaaa@4050@
  • при любом n=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC6@  выполнено

S τ n+1 (D) S τ n (D), S τ n+1 ( Γ 0 ) S τ n ( Γ 0 )=иμ( n=1 S τ n (D))=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqaHepaDaeaacaWGUbGaey4kaSIaaGymaaaakiaaiIcacaWG ebGaaGykamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8hrQZTaam4uamaaDaaaleaacqaHepaDaeaacaWGUbaaaOGaaGik aiaadseacaaIPaGaaGilaiaaysW7caWGtbWaa0baaSqaaiabes8a0b qaaiaad6gacqGHRaWkcaaIXaaaaOGaaGikaiabfo5ahnaaBaaaleaa caaIWaaabeaakiaaiMcacqGHPiYXcaWGtbWaa0baaSqaaiabes8a0b qaaiaad6gaaaGccaaIOaGaeu4KdC0aaSbaaSqaaiaaicdaaeqaaOGa aGykaiaai2dacqGHfiIXcaaMe8UaaGjcVlaayIW7caWG4qGaaGjcVl aaysW7caaMi8UaeqiVd0MaaGikamaauahabeWcbaGaamOBaiaai2da caaIXaaabaGaeyOhIukaniablMIijbGccaWGtbWaa0baaSqaaiabes 8a0bqaaiaad6gaaaGccaaIOaGaamiraiaaiMcacaaIPaGaaGypaiaa icdacaaIUaaaaa@83A6@

Обозначим D 0 =D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIWaaabeaakiaai2dacaWGebGaaGilaaaa@3C06@   D n = S τ n (D), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaai2dacaWGtbWaa0baaSqaaiabes8a0bqa aiaad6gaaaGccaaIOaGaamiraiaaiMcacaaISaaaaa@416B@   Γ n = S τ n ( Γ 0 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6gaaeqaaOGaaGypaiaadofadaqhaaWcbaGaeqiXdqha baGaamOBaaaakiaaiIcacqqHtoWrdaWgaaWcbaGaaGimaaqabaGcca aIPaGaaGilaaaa@4399@   n=1,2,. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGjcVlaai6caaaa@400F@  В силу принятых предположений отображение S τ n : D n1 ¯ D n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqaHepaDaeaacaWGUbaaaOGaaGOoamaanaaabaGaamiramaa BaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaOGaeyOKH46aa0aaae aacaWGebWaaSbaaSqaaiaad6gaaeqaaaaaaaa@4423@  биективно. Определим обратное к S τ : D 0 ¯ D 1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGOoamaanaaabaGaamiramaaBaaaleaa caaIWaaabeaaaaGccqGHsgIRdaqdaaqaaiaadseadaWgaaWcbaGaaG ymaaqabaaaaaaa@4116@  отображение Λ τ = S τ 1 : D 1 ¯ D 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiabes8a0bqabaGccaaI9aGaam4uamaaDaaaleaacqaHepaD aeaacqGHsislcaaIXaaaaOGaaGOoamaanaaabaGaamiramaaBaaale aacaaIXaaabeaaaaGccqGHsgIRdaqdaaqaaiaadseadaWgaaWcbaGa aGimaaqabaaaaOGaaGOlaaaa@47B8@

Рассмотрим примеры множеств D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  и отображений S τ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGilaaaa@3B90@  обладающих перечисленными свойствами.

Пример 1.1. Пусть область D 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabgk Oimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaaaa@466D@  ограничена, то есть

r>0MD|M | 2 r, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIqIaam OCaiaai6dacaaIWaGaaGjbVlaaysW7cqGHaiIicaWGnbGaeyicI4Sa amiraiaaysW7caaMe8UaaGiFaiaad2eacaaI8bWaaSbaaSqaamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWba aeqabaGaaGOmaaaaaeqaaOGaeyizImQaamOCaiaaiYcaaaa@5784@

а кроме того, еще выпукла и 0D. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgI GiolaadseacaaIUaaaaa@3BC6@  Выберем k(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3E0B@  так, чтобы (1k)r<τ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGRbGaaGykaiaadkhacaaI8aGaeqiXdqNaaGOlaaaa @403E@  Положим λ= 1 k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypamaalaaabaGaaGymaaqaaiaadUgaaaGaaGOlaaaa@3CF5@  Очевидно, тогда λ>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG Opaiaaigdaaaa@3B3E@  и (λ1) r λ <τ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjabgkHiTiaaigdacaaIPaWaaSaaaeaacaWGYbaabaGaeq4UdWga aiaaiYdacqaHepaDcaaIUaaaaa@42C6@  Определим операторы S τ , Λ τ = S τ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGilaiaayIW7cqqHBoatdaWgaaWcbaGa eqiXdqhabeaakiaai2dacaWGtbWaa0baaSqaaiabes8a0bqaaiabgk HiTiaaigdaaaaaaa@45CA@  соотношениями

M D ¯ S τ M=kM, M D 1 ¯ Λ τ M =λ M . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam ytaiabgIGiopaanaaabaGaamiraaaacaaMe8Uaam4uamaaBaaaleaa cqaHepaDaeqaaOGaamytaiaai2dacaWGRbGaamytaiaaiYcacaaMe8 UaaGjbVlabgcGiIiqad2eagaqbaiabgIGiopaanaaabaGaamiramaa BaaaleaacaaIXaaabeaaaaGccaaMe8UaaGjbVlaayIW7cqqHBoatda WgaaWcbaGaeqiXdqhabeaakiqad2eagaqbaiaai2dacqaH7oaBceWG nbGbauaacaaIUaaaaa@5999@

Очевидно, при таком определении области D 1 = S τ (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaai2dacaWGtbWaaSbaaSqaaiabes8a0bqa baGccaaIOaGaamiraiaaiMcaaaa@3F89@  и D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  подобны, и для отображения S τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaaaa@3AD0@  выполнены все требуемые условия. В частности, имеем n=1 S τ n (D)={0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeSykIKeakiaadofa daqhaaWcbaGaeqiXdqhabaGaamOBaaaakiaaiIcacaWGebGaaGykai aai2dacaaI7bGaaGimaiaai2hacaaIUaaaaa@47F9@  

Пример 1.2. Пусть r>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 dacaaIWaGaaGilaaaa@3B36@   D={M=(x,y) 2 :|y|<r}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaaI7bGaamytaiaai2dacaaIOaGaamiEaiaaiYcacaWG5bGaaGyk aiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8xhHi1aaWbaaSqabeaacaaIYaaaaOGaaGOoaiaaiYhacaWG5bGa aGiFaiaaiYdacaWGYbGaaGyFaiaai6caaaa@54C4@  Рассматриваемая область D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  представляет собой полосу на плоскости, а ее граница представляет собой две прямые: Γ 0 ={M=(x,y):y=±r}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaicdaaeqaaOGaaGypaiaaiUhacaWGnbGaaGypaiaaiIca caWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadMhacaaI9aGaeyySae RaamOCaiaai2hacaaIUaaaaa@4907@  Выберем k(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3E0B@  так, чтобы (1k)r<τ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGRbGaaGykaiaadkhacaaI8aGaeqiXdqNaaGilaaaa @403C@  и положим λ= 1 k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypamaalaaabaGaaGymaaqaaiaadUgaaaGaaGOlaaaa@3CF5@  Определим операторы S τ , Λ τ = S τ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGilaiaayIW7cqqHBoatdaWgaaWcbaGa eqiXdqhabeaakiaai2dacaWGtbWaa0baaSqaaiabes8a0bqaaiabgk HiTiaaigdaaaaaaa@45CA@  соотношениями

M=(x,y) D ¯ S τ M=(x,ky), M =( x , y ) D 1 ¯ Λ τ M =( x ,λ y ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam ytaiaai2dacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiopaa naaabaGaamiraaaacaaMe8UaaGjbVlaadofadaWgaaWcbaGaeqiXdq habeaakiaad2eacaaI9aGaaGikaiaadIhacaaISaGaam4AaiaadMha caaIPaGaaGilaiaayIW7caaMe8UaeyiaIiIabmytayaafaGaaGypai aaiIcaceWG4bGbauaacaaISaGabmyEayaafaGaaGykaiabgIGiopaa naaabaGaamiramaaBaaaleaacaaIXaaabeaaaaGccaaMe8UaaGjbVl abfU5amnaaBaaaleaacqaHepaDaeqaaOGabmytayaafaGaaGypaiaa iIcaceWG4bGbauaacaaISaGaeq4UdWMabmyEayaafaGaaGykaiaai6 caaaa@69FF@

Очевидно, при таком определении выполнены все требуемые условия. В частности, D n ={M=(x,y):|y|r k n }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaai2dacaaI7bGaamytaiaai2dacaaIOaGa amiEaiaaiYcacaWG5bGaaGykaiaaiQdacaaI8bGaamyEaiaaiYhacq GHKjYOcaWGYbGaam4AamaaCaaaleqabaGaamOBaaaakiaai2hacaaI Saaaaa@4BC5@   Γ n ={M=(x,y):y=±r k n }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6gaaeqaaOGaaGypaiaaiUhacaWGnbGaaGypaiaaiIca caWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadMhacaaI9aGaeyySae RaamOCaiaadUgadaahaaWcbeqaaiaad6gaaaGccaaI9bGaaGilaaaa @4B58@  а множество n=1 S τ n (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeSykIKeakiaadofa daqhaaWcbaGaeqiXdqhabaGaamOBaaaakiaaiIcacaWGebGaaGykaa aa@43B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это прямая {M=(x,y):y=0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaad2 eacaaI9aGaaGikaiaadIhacaaISaGaamyEaiaaiMcacaaI6aGaamyE aiaai2dacaaIWaGaaGyFaiaaiYcaaaa@43BB@  плоская мера которой равна нулю.

Пример 1.3. Пусть снова задано r>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 dacaaIWaGaaGOlaaaa@3B38@  Определим область D 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabgk Oimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaaaa@466D@  соотношением D={M=(x,y) 2 :|y|<r,x>0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaaI7bGaamytaiaai2dacaaIOaGaamiEaiaaiYcacaWG5bGaaGyk aiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8xhHi1aaWbaaSqabeaacaaIYaaaaOGaaGOoaiaaiYhacaWG5bGa aGiFaiaaiYdacaWGYbGaaGilaiaaysW7caWG4bGaaGOpaiaaicdaca aI9bGaaGOlaaaa@5986@  Ее граница MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это множество Γ 0 ={M=(x,y):x=0,y[r,r]илиx>0,y=±r}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaicdaaeqaaOGaaGypaiaaiUhacaWGnbGaaGypaiaaiIca caWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadIhacaaI9aGaaGimai aaiYcacaaMe8UaamyEaiabgIGiolaaiUfacqGHsislcaWGYbGaaGil aiaadkhacaaIDbGaaGjbVlaayIW7caWG4qGaam4oeiaadIdbcaaMi8 UaaGjbVlaadIhacaaI+aGaaGimaiaaiYcacaaMe8UaamyEaiaai2da cqGHXcqScaWGYbGaaGyFaiaai6caaaa@62EB@  Выберем k(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3E0B@  так, чтобы (1k)r<τ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGRbGaaGykaiaadkhacaaI8aGaeqiXdqNaaGilaaaa @403C@  и положим λ= 1 k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypamaalaaabaGaaGymaaqaaiaadUgaaaGaaGOlaaaa@3CF5@  Определим треугольники Δ={M=(x,y) D ¯ :1x|y|} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiUhacaWGnbGaaGypaiaaiIcacaWG4bGaaGilaiaadMhacaaI PaGaeyicI48aa0aaaeaacaWGebaaaiaaiQdacaaIXaGaeyOeI0Iaam iEaiabgwMiZkaaiYhacaWG5bGaaGiFaiaai2haaaa@4C86@  и Δ ={ M =( x , y ) D 1 ¯ :1 x | y |} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbau aacaaI9aGaaG4Eaiqad2eagaqbaiaai2dacaaIOaGabmiEayaafaGa aGilaiqadMhagaqbaiaaiMcacqGHiiIZdaqdaaqaaiaadseadaWgaa WcbaGaaGymaaqabaaaaOGaaGOoaiaaigdacqGHsislceWG4bGbauaa cqGHLjYScaaI8bGabmyEayaafaGaaGiFaiaai2haaaa@4DBF@  и зададим операторы S τ , Λ τ = S τ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGilaiaayIW7cqqHBoatdaWgaaWcbaGa eqiXdqhabeaakiaai2dacaWGtbWaa0baaSqaaiabes8a0bqaaiabgk HiTiaaigdaaaaaaa@45CA@  соотношениями

M=(x,y) D ¯ S τ M= (x+1k,ky), еслиMΔ, (x+ 1k x+1 ,ky), еслиM D ¯ \Δ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam ytaiaai2dacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiopaa naaabaGaamiraaaacaaMe8UaaGjbVlaaysW7caaMi8Uaam4uamaaBa aaleaacqaHepaDaeqaaOGaamytaiaai2dacaaMb8+aaiqaaeaafaqa aeGacaaabaGaaGikaiaadIhacqGHRaWkcaaIXaGaeyOeI0Iaam4Aai aaiYcacaWGRbGaamyEaiaaiMcacaaISaaabaGaaGjcVlaadwdbcaWG brGaam4oeiaadIdbcaaMi8UaaGjcVlaaysW7caWGnbGaaGzaVlabgI GiolaaygW7cqqHuoarcaaISaaabaGaaGikaiaadIhacqGHRaWkdaWc aaqaaiaaigdacqGHsislcaWGRbaabaGaamiEaiabgUcaRiaaigdaaa GaaGilaiaadUgacaWG5bGaaGykaiaaiYcaaeaacaaMi8Uaamyneiaa dgebcaWG7qGaamioeiaayIW7caaMi8UaaGjbVlaad2eacqGHiiIZda qdaaqaaiaadseaaaGaaiixaiabfs5aejaaiYcaaaaacaGL7baaaaa@839D@

M =( x , y ) D 1 ¯ S τ M = ( x 1+k,λ y ), еслиMΔ, ( 1 2 ( x 1+ ( x +1) 2 4(1k) ),λy), если M D 1 ¯ \ Δ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIabm ytayaafaGaaGzaVlaai2dacaaMb8UaaGikaiqadIhagaqbaiaaiYca ceWG5bGbauaacaaIPaGaaGzaVlabgIGiolaaygW7daqdaaqaaiaads eadaWgaaWcbaGaaGymaaqabaaaaOGaaGjbVlaadofadaWgaaWcbaGa eqiXdqhabeaakiqad2eagaqbaiaaygW7caaI9aGaaGzaVpaaceaaba qbaeaabiGaaaqaaiaaiIcaceWG4bGbauaacqGHsislcaaIXaGaey4k aSIaam4AaiaaiYcacqaH7oaBceWG5bGbauaacaaIPaGaaGilaaqaai aaygW7caaMi8UaamyneiaadgebcaWG7qGaamioeiaayIW7caaMi8Ua aGjbVlaad2eacqGHiiIZcqqHuoarcaaISaaabaGaaGikamaalaaaba GaaGymaaqaaiaaikdaaaGaaGikaiqadIhagaqbaiabgkHiTiaaigda cqGHRaWkdaGcaaqaaiaaiIcaceWG4bGbauaacqGHRaWkcaaIXaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdacaaIOaGaaGym aiabgkHiTiaadUgacaaIPaaaleqaaOGaaGykaiaaiYcacqaH7oaBca WG5bGaaGykaiaaiYcaaeaacaaMb8UaaGjcVlaadwdbcaWGbrGaam4o eiaadIdbcaaMi8UaaGjcVlaaysW7ceWGnbGbauaacqGHiiIZdaqdaa qaaiaadseadaWgaaWcbaGaaGymaaqabaaaaOGaaiixaiqbfs5aezaa faGaaGOlaaaaaiaawUhaaaaa@9499@

Очевидно, при таком определении выполнены все требуемые условия. В частности, D n ={M=(x,y):x>(1k ) n ,|y| k n r}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaai2dacaaI7bGaamytaiaai2dacaaIOaGa amiEaiaaiYcacaWG5bGaaGykaiaaiQdacaWG4bGaaGOpaiaaiIcaca aIXaGaeyOeI0Iaam4AaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaaI SaGaaGjbVlaaiYhacaWG5bGaaGiFaiabgsMiJkaadUgadaahaaWcbe qaaiaad6gaaaGccaWGYbGaaGyFaiaaiYcaaaa@54F4@   Γ n ={M=(x,y):x=(1k ) n ,y( k n r, k n r)илиx>(1k ) n ,y=± k n r}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6gaaeqaaOGaaGypaiaaiUhacaWGnbGaaGypaiaaiIca caWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadIhacaaI9aGaaGikai aaigdacqGHsislcaWGRbGaaGykamaaCaaaleqabaGaamOBaaaakiaa iYcacaaMe8UaamyEaiabgIGiolaaiIcacqGHsislcaWGRbWaaWbaaS qabeaacaWGUbaaaOGaamOCaiaaiYcacaWGRbWaaWbaaSqabeaacaWG UbaaaOGaamOCaiaaiMcacaaMi8UaamioeiaadUdbcaWG4qGaaGjcVl aaysW7caWG4bGaaGOpaiaaiIcacaaIXaGaeyOeI0Iaam4AaiaaiMca daahaaWcbeqaaiaad6gaaaGccaaISaGaaGjbVlaadMhacaaI9aGaey ySaeRaam4AamaaCaaaleqabaGaamOBaaaakiaadkhacaaI9bGaaGil aaaa@7056@  а множество n=1 S τ n (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqbCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeSykIKeakiaadofa daqhaaWcbaGaeqiXdqhabaGaamOBaaaakiaaiIcacaWGebGaaGykaa aa@43B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это луч {M=(x,y):x1,y=0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaad2 eacaaI9aGaaGikaiaadIhacaaISaGaamyEaiaaiMcacaaI6aGaamiE aiabgwMiZkaaigdacaaISaGaaGjbVlaadMhacaaI9aGaaGimaiaai2 hacaaISaaaaa@497C@  плоская мера которой равна нулю.

Теперь определим приближенное к (1.1) уравнение. Поскольку τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@39CC@  далее считаем неизменным, будем опускать соответствующий индекс в обозначениях отображений, то есть далее S τ =S, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqaHepaDaeqaaOGaaGypaiaadofacaaISaaaaa@3D2F@   Λ τ =Λ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiabes8a0bqabaGccaaI9aGaeu4MdWKaaGOlaaaa@3E6B@  Пусть на ( 2 \D)× + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWba aSqabeaacaaIYaaaaOGaaiixaiaadseacaaIPaGaey41aqRae8xhHi 1aaSbaaSqaaiabgUcaRaqabaaaaa@4AFA@  задана функция φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@  такая, что при любом t + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaSbaaSqaaiabgUcaRaqabaaaaa@464A@  функция φ(,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiabgwSixlaaiYcacaWG0bGaaGykaaaa@3F22@  дважды дифференцируема и φ | (x,y) Γ 0 = φ 0 (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG iFamaaBaaaleaacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGi olabfo5ahnaaBaaabaGaaGimaaqabaaabeaakiaai2dacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@4967@  Будем предполагать, что отображение Λ: D 1 ¯ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdWKaaG OoamaanaaabaGaamiramaaBaaaleaacaaIXaaabeaaaaGccqGHsgIR daqdaaqaaiaadseaaaaaaa@3ED2@  продолжено на все множество D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGebaaaaaa@38E1@  таким образом, что Λ( D ¯ \ D 1 ¯ ) 2 \ D ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdWKaaG ikamaanaaabaGaamiraaaacaGGCbWaa0aaaeaacaWGebWaaSbaaSqa aiaaigdaaeqaaaaakiaaiMcacqGHckcZtuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaaGOmaaaa kiaacYfadaqdaaqaaiaadseaaaGaaGOlaaaa@4E7F@  При t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaGaaGilaaaa@3B38@   M=(x,y)D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiolaadseaaaa@4003@  рассмотрим уравнение

u t (M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamytaiaaiYca caWG0bGaaGykaaaa@40BC@

=f(t,M,u(ΛM,t), u x (ΛM,t), u y (ΛM,t), 2 u x 2 (ΛM,t), 2 u y 2 (ΛM,t), 2 u xy (ΛM,t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadA gacaaIOaGaamiDaiaaiYcacaWGnbGaaGilaiaadwhacaaIOaGaeu4M dWKaamytaiaaiYcacaWG0bGaaGykaiaaiYcadaWcaaqaaiabgkGi2k aadwhaaeaacqGHciITcaWG4baaaiaaiIcacqqHBoatcaWGnbGaaGil aiaadshacaaIPaGaaGilamaalaaabaGaeyOaIyRaamyDaaqaaiabgk Gi2kaadMhaaaGaaGikaiabfU5amjaad2eacaaISaGaamiDaiaaiMca caaISaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1b aabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGa eu4MdWKaamytaiaaiYcacaWG0bGaaGykaiaaiYcadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG5bWa aWbaaSqabeaacaaIYaaaaaaakiaaiIcacqqHBoatcaWGnbGaaGilai aadshacaaIPaGaaGilamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDaaqaaiabgkGi2kaadIhacqGHciITcaWG5baaaiaaiI cacqqHBoatcaWGnbGaaGilaiaadshacaaIPaGaaGykaiaaiYcaaaa@82F9@  (1.4)

u(N,t)=φ(N,t),N 2 \D,t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaywW7caaMf8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMf8UaaGzbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caWG1bGaaGikaiaad6eacaaISaGa amiDaiaaiMcacaaI9aGaeqOXdOMaaGikaiaad6eacaaISaGaamiDai aaiMcacaaISaGaaGjbVlaaysW7caWGobGaeyicI48efv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaai aaikdaaaGccaGGCbGaamiraiaaiYcacaaMe8UaaGjbVlaadshacaaI +aGaaGimaiaai6caaaa@98C7@

Решение приближенного уравнения (1.4) с начально-краевыми условиями (1.2), (1.3) определяется при любом t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  последовательно на каждом множестве D n = D n1 \ D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=na8enaaBaaaleaa caWGUbaabeaakiaai2dacaWGebWaaSbaaSqaaiaad6gacqGHsislca aIXaaabeaakiaacYfacaWGebWaaSbaaSqaaiaad6gaaeqaaOGaaGil aaaa@4D96@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  следующими соотношениями. Положим u 0 (M,t)=φ(M,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWGnbGaaGilaiaadshacaaIPaGa aGypaiabeA8aQjaaiIcacaWGnbGaaGilaiaadshacaaIPaGaaGilaa aa@44F7@   M 2 \ D 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaOGaaiixaiaadseadaWgaaWcbaGaaG imaaqabaGccaaISaaaaa@4957@   t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaGaaGilaaaa@3B38@  и обозначим через u n (M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGnbGaaGilaiaadshacaaIPaaa aa@3E10@  решение задачи (1.4), (1.2), (1.3) при M D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF daprdaWgaaWcbaGaamOBaaqabaGccaaISaaaaa@48B9@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@   t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaGaaGOlaaaa@3B3A@  Тогда решение при M D n+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF daprdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaGilaaaa@4A56@   t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  будет определяться формулой

u n+1 (M,t)=ϑ(M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzaVlaayg W7caWG1bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaaiIca caWGnbGaaGilaiaadshacaaIPaGaaGypaiabeg9akjaaiIcacaWGnb GaaGykaaaa@4767@

+ 0 t f(s,M, u n (ΛM,s), u n x (ΛM,s), u n y (ΛM,s), 2 u n x 2 (ΛM,s), 2 u n y 2 (ΛM,s), 2 u n xy (ΛM,s))ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaays W7caaMi8Uaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGH RiI8aOGaaGzaVlaadAgacaaIOaGaam4CaiaaiYcacaWGnbGaaGilai aadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeu4MdWKaamytaiaa iYcacaaMb8Uaam4CaiaaiMcacaaISaWaaSaaaeaacqGHciITcaWG1b WaaSbaaSqaaiaad6gacaaMb8oabeaaaOqaaiabgkGi2kaadIhaaaGa aGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGaaGilam aalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGUbGaaGzaVdqabaaa keaacqGHciITcaWG5baaaiaaiIcacqqHBoatcaWGnbGaaGilaiaayg W7caWGZbGaaGykaiaaiYcadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadwhadaWgaaWcbaGaamOBaiaaygW7aeqaaaGcbaGaey OaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGaeu4MdWKa amytaiaaiYcacaaMb8Uaam4CaiaaiMcacaaISaWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaad6gacaaM b8oabeaaaOqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaO GaaGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGaaGil amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBa aaleaacaWGUbGaaGzaVdqabaaakeaacqGHciITcaWG4bGaeyOaIyRa amyEaaaacaaIOaGaeu4MdWKaamytaiaaiYcacaaMb8Uaam4CaiaaiM cacaaIPaGaamizaiaadohacaaIUaGaaGzaVdaa@A87A@

Из этой формулы следует, что решение u(M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWGnbGaaGilaiaadshacaaIPaaaaa@3CE7@  в граничных точках M Γ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Giolabfo5ahnaaBaaaleaacaWGUbaabeaaaaa@3CE4@  областей D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaaiYcaaaa@3AAF@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  определяется следующими рекуррентными соотношениями

u(M,t )| M Γ n+1 =ϑ(M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzaVlaayg W7caWG1bGaaGikaiaad2eacaaISaGaamiDaiaaiMcacaaI8bWaaSba aSqaaiaad2eacqGHiiIZcqqHtoWrdaWgaaqaaiaad6gacqGHRaWkca aIXaaabeaaaeqaaOGaaGypaiabeg9akjaaiIcacaWGnbGaaGykaaaa @4C4C@

+ 0 t f(s,M,u(ΛM,s), u x (ΛM,s), u y (ΛM,s), 2 u x 2 (ΛM,s), 2 u y 2 (ΛM,s), 2 u xy (ΛM,s ))| ΛM Γ n ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaays W7cqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGc caaMb8UaamOzaiaaiIcacaWGZbGaaGilaiaad2eacaaISaGaamyDai aaiIcacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGaaGykaiaaiYca daWcaaqaaiabgkGi2kaadwhacaaMb8oabaGaeyOaIyRaamiEaiaayg W7aaGaaGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGa aGilamaalaaabaGaeyOaIyRaamyDaiaaygW7aeaacqGHciITcaWG5b GaaGzaVdaacaaIOaGaeu4MdWKaamytaiaaiYcacaaMb8Uaam4Caiaa iMcacaaISaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WG1bGaaGzaVdqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaGc caaMb8oaaiaaiIcacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGaaG ykaiaaiYcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa dwhacaaMb8oabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGOmaaaaki aaygW7aaGaaGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaI PaGaaGilamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yDaiaaygW7aeaacqGHciITcaWG4bGaeyOaIyRaamyEaiaaygW7aaGa aGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGaaGykai aaiYhadaWgaaWcbaGaeu4MdWKaamytaiabgIGiolabfo5ahnaaBaaa baGaamOBaiaaygW7aeqaaaqabaGccaWGKbGaam4Caiaai6caaaa@AF28@

2. Приближенное решение уравнения теплопроводности

Проиллюстрируем предлагаемый метод на примере решения начально-краевой задачи для уравнения теплопроводности.

Пусть D=(π,π)×(π,π) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaaIOaGaeyOeI0IaeqiWdaNaaGilaiabec8aWjaaiMcacqGHxdaT caaIOaGaeyOeI0IaeqiWdaNaaGilaiabec8aWjaaiMcacqGHckcZtu uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaa CaaaleqabaGaaGOmaaaakiaai6caaaa@5711@  Границей этого квадрата является множество Γ 0 ={M=(x,y):x=±π,y[π,π]илиx(π,π),y=±π}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaicdaaeqaaOGaaGypaiaaiUhacaWGnbGaaGypaiaaiIca caWG4bGaaGilaiaadMhacaaIPaGaaGOoaiaadIhacaaI9aGaeyySae RaeqiWdaNaaGilaiaaysW7caWG5bGaeyicI4SaaG4waiabgkHiTiab ec8aWjaaiYcacqaHapaCcaaIDbGaaGjbVlaayIW7caWG4qGaam4oei aadIdbcaaMi8UaaGjbVlaadIhacqGHiiIZcaaIOaGaeyOeI0IaeqiW daNaaGilaiabec8aWjaaiMcacaaISaGaaGjbVlaadMhacaaI9aGaey ySaeRaeqiWdaNaaGyFaiaai6caaaa@6EB2@  Рассмотрим уравнение

u t (x,y,t)= 1 2 ( 2 u x 2 (x,y,t)+ 2 u y 2 (x,y,t)),(x,y)D,t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYca caWG5bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaai aaikdaaaGaaGikamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaamyDaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaO GaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG0bGaaGykaiabgUca RmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaai abgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiaadIha caaISaGaamyEaiaaiYcacaWG0bGaaGykaiaaiMcacaaISaGaaGjbVl aaysW7caaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiolaadsea caaISaGaaGjbVlaaysW7caWG0bGaaGOpaiaaicdacaaISaaaaa@7161@  (2.1)

при условиях

u | t=0 =sin(x)sin(y),u | (x,y) Γ 0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY hadaWgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2daciGGZbGa aiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyAaiaac6gaca aIOaGaamyEaiaaiMcacaaISaGaaGjbVlaaysW7caWG1bGaaGiFamaa BaaaleaacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiolabfo 5ahnaaBaaabaGaaGimaaqabaaabeaakiaai2dacaaIWaGaaGOlaaaa @580F@  (2.2)

Заметим, что «точным» решением этой задачи является функция

u=sin(x)sin(y) e t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaOGaaGOlaaaa@47FC@

Построим приближенное решение. Будем использовать операторы S,Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiY cacaaMi8Uaeu4MdWeaaa@3C9B@  из примера 1.1. Выберем коэффициент «подобия» k(0,1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaGaaGilaaaa@3EC1@  положим λ= 1 k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypamaalaaabaGaaGymaaqaaiaadUgaaaGaaGOlaaaa@3CF5@  Теперь заменим рассматриваемое уравнение (2.1) приближенным уравнением

u t (x,y,t)= 1 2 ( 2 u x 2 (λx,λy,t)+ 2 u y 2 (λx,λy,t)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYca caWG5bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaai aaikdaaaGaaGikamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaamyDaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaO GaaGikaiabeU7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiYcacaWG 0bGaaGykaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYa aaaOGaamyDaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaa aOGaaGikaiabeU7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiYcaca WG0bGaaGykaiaaiMcacaaIUaaaaa@67B5@  (2.3)

Решение приближенной задачи (2.3), (2.2) будем находить последовательно на границах Γ n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6gaaeqaaOGaaGilaaaa@3B4E@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  квадратов D n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaai6caaaa@3AB1@  Для этих границ имеют место следующие равносильные соотношения

Γ n+1 =k Γ n Γ n =λ Γ n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaai2dacaWGRbGaeu4K dC0aaSbaaSqaaiaad6gaaeqaaOGaaGjbVlaayIW7cqGHuhY2caaMe8 UaaGjcVlabfo5ahnaaBaaaleaacaWGUbaabeaakiaai2dacqaH7oaB cqqHtoWrdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaGOlaa aa@5307@

Сначала определим решение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@  в точках линии Γ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaigdaaeqaaaaa@3A56@  через известные заданные значения функции u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@  в точках линии Γ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaicdaaeqaaOGaaGOlaaaa@3B17@  Затем определим u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@  в точках Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaikdaaeqaaaaa@3A57@  через уже найденные ее значения в точках линии Γ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaaigdaaeqaaOGaaGilaaaa@3B16@  и т. д. Таким образом, при каждом n=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC6@  получаем следующее соотношение для нахождения приближенного решения

u t (x,y,t )| (x,y) Γ n+1 = 1 2 ( 2 u x 2 (λx,λy,t)+ 2 u y 2 (λx,λy,t ))| (λx,λy) Γ n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYca caWG5bGaaGilaiaadshacaaIPaGaaGiFamaaBaaaleaacaaIOaGaam iEaiaaiYcacaWG5bGaaGykaiabgIGiolabfo5ahnaaBaaabaGaamOB aiabgUcaRiaaigdaaeqaaaqabaGccaaI9aWaaSaaaeaacaaIXaaaba GaaGOmaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaa GccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5bGaaGilaiaa dshacaaIPaGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaik daaaGccaWG1baabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGOmaaaa aaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5bGaaGilai aadshacaaIPaGaaGykaiaaiYhadaWgaaWcbaGaaGikaiabeU7aSjaa dIhacaaISaGaeq4UdWMaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaa qaaiaad6gaaeqaaaqabaGccaaIUaaaaa@7F5E@

Следовательно,

u(x,y,t )| (x,y) Γ n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caWG1bGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG0bGaaGyk aiaaiYhadaWgaaWcbaGaaGikaiaadIhacaaISaGaamyEaiaaiMcacq GHiiIZcqqHtoWrdaWgaaqaaiaad6gacqGHRaWkcaaIXaaabeaaaeqa aaaa@4CC7@

=u(x,y ,0)| (x,y) Γ n+1 + 1 2 0 t ( 2 u x 2 (λx,λy,s)+ 2 u y 2 (λx,λy,s ))| (x,y) Γ n ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadw hacaaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaaicdacaaIPaGaaGiF amaaBaaaleaacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGiol abfo5ahnaaBaaabaGaamOBaiabgUcaRiaaigdaaeqaaaqabaGccaaM b8Uaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGccaaMb8UaaGikamaalaaabaGa eyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadI hadaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiabeU7aSjaadIhacaaI SaGaeq4UdWMaamyEaiaaiYcacaWGZbGaaGykaiabgUcaRmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaa dMhadaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiabeU7aSjaadIhaca aISaGaeq4UdWMaamyEaiaaiYcacaWGZbGaaGykaiaaiMcacaaI8bWa aSbaaSqaaiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaeyicI4Saeu 4KdC0aaSbaaeaacaWGUbaabeaaaeqaaOGaaeizaiaadohacaaIUaGa aGzbVlaaywW7aaa@84B8@  (2.4)

Приведем результаты четырех шагов вычислений по итерационной формуле (2.4).

1) При (x,y) Γ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGym aaqabaaaaa@3FF0@  имеем (λx,λy) Γ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiMcacqGHiiIZcqqHtoWr daWgaaWcbaGaaGimaaqabaGccaaISaaaaa@4417@  и в силу (2.2) выполнено u(λx,λy,t)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacqaH7oaBcaWG4bGaaGilaiabeU7aSjaadMhacaaISaGaamiDaiaa iMcacaaI9aGaaGimaiaai6caaaa@4467@  Поэтому по формуле (2.4) здесь получаем

u=sin(x)sin(y)при(x,y) Γ 1 ,t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaaMe8UaaGjcVlaayIW7caWG=q GaamiqeiaadIdbcaaMi8UaaGjcVlaaysW7caaIOaGaamiEaiaaiYca caWG5bGaaGykaiabgIGiolabfo5ahnaaBaaaleaacaaIXaaabeaaki aaiYcacaaMi8UaaGjbVlaadshacaaI+aGaaGimaiaai6caaaa@5EE7@

2) При (x,y) Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGOm aaqabaaaaa@3FF1@  имеем (λx,λy) Γ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiMcacqGHiiIZcqqHtoWr daWgaaWcbaGaaGymaaqabaGccaaIUaaaaa@441A@  Воспользуемся значениями решения, найденными на предыдущем шаге. Получим 1 2 ( 2 u x 2 (λx,λy,t)+ 2 u y 2 (λx,λy,t))=sin(λx)sin(λy). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaG OmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5bGa aGilaiaadshacaaIPaGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamyEamaaCaaaleqabaGa aGOmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5b GaaGilaiaadshacaaIPaGaaGykaiaai2dacqGHsislciGGZbGaaiyA aiaac6gacaaIOaGaeq4UdWMaamiEaiaaiMcaciGGZbGaaiyAaiaac6 gacaaIOaGaeq4UdWMaamyEaiaaiMcacaaIUaaaaa@6BEB@  Теперь по формуле (2.4) получаем

u=sin(x)sin(y) 0 t sin(λx)sin(λy)ds=sin(x)sin(y)sin(λx)sin(λy)t. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacqGHsislcaaMb8+aa8qmaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaGzaVlGacohacaGGPbGa aiOBaiaaiIcacqaH7oaBcaWG4bGaaGykaiGacohacaGGPbGaaiOBai aaiIcacqaH7oaBcaWG5bGaaGykaiaadsgacaWGZbGaaGypaiGacoha caGGPbGaaiOBaiaaiIcacaWG4bGaaGykaiGacohacaGGPbGaaiOBai aaiIcacaWG5bGaaGykaiabgkHiTiGacohacaGGPbGaaiOBaiaaiIca cqaH7oaBcaWG4bGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH7o aBcaWG5bGaaGykaiaadshacaaIUaaaaa@779A@

3) Теперь пусть (x,y) Γ 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaG4m aaqabaaaaa@3FF2@  и поэтому (λx,λy) Γ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiMcacqGHiiIZcqqHtoWr daWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@441B@  Тогда

1 2 ( 2 u x 2 (λx,λy,t)+ 2 u y 2 (λx,λy,t))=sin(λx)sin(λy)+ λ 2 sin( λ 2 x)sin( λ 2 y)t, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaG OmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5bGa aGilaiaadshacaaIPaGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamyEamaaCaaaleqabaGa aGOmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5b GaaGilaiaadshacaaIPaGaaGykaiaai2dacqGHsislciGGZbGaaiyA aiaac6gacaaIOaGaeq4UdWMaamiEaiaaiMcaciGGZbGaaiyAaiaac6 gacaaIOaGaeq4UdWMaamyEaiaaiMcacqGHRaWkcqaH7oaBdaahaaWc beqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gacaaIOaGaeq4UdW2aaW baaSqabeaacaaIYaaaaOGaamiEaiaaiMcaciGGZbGaaiyAaiaac6ga caaIOaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaamyEaiaaiMcaca WG0bGaaGilaaaa@802E@

и после подстановки этого выражения в (2.4) получаем

u=sin(x)sin(y)+ 0 t (sin(λx)sin(λy)+ λ 2 sin( λ 2 x)sin( λ 2 y)s)ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacqGHRaWkcaaMb8+aa8qmaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaGzaVlaaiIcacqGHsisl ciGGZbGaaiyAaiaac6gacaaIOaGaeq4UdWMaamiEaiaaiMcaciGGZb GaaiyAaiaac6gacaaIOaGaeq4UdWMaamyEaiaaiMcacqGHRaWkcqaH 7oaBdaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gacaaIOa Gaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaamiEaiaaiMcaciGGZbGa aiyAaiaac6gacaaIOaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaam yEaiaaiMcacaWGZbGaaGykaiaadsgacaWGZbaaaa@726E@

=sin(x)sin(y)sin(λx)sin(λy)t+ 1 2 λ 2 sin( λ 2 x)sin( λ 2 y) t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaaiIcacaWG4bGaaGykaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaiabgkHiTiGacohacaGGPbGaaiOBaiaaiI cacqaH7oaBcaWG4bGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH 7oaBcaWG5bGaaGykaiaadshacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaaiabeU7aSnaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGa aiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG4bGaaG ykaiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaa ikdaaaGccaWG5bGaaGykaiaadshadaahaaWcbeqaaiaaikdaaaGcca aIUaaaaa@6A7D@

4) Пусть (x,y) Γ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGin aaqabaaaaa@3FF3@  и, соответственно, (λx,λy) Γ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadIhacaaISaGaeq4UdWMaamyEaiaaiMcacqGHiiIZcqqHtoWr daWgaaWcbaGaaG4maaqabaGccaaIUaaaaa@441C@  В этом случае имеем

1 2 ( 2 u x 2 (λx,λy,t)+ 2 u y 2 (λx,λy,t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaG OmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5bGa aGilaiaadshacaaIPaGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamyEamaaCaaaleqabaGa aGOmaaaaaaGccaaIOaGaeq4UdWMaamiEaiaaiYcacqaH7oaBcaWG5b GaaGilaiaadshacaaIPaGaaGykaaaa@5BA2@

=sin(λx)sin(λy)+ λ 2 sin( λ 2 x)sin( λ 2 y)t 1 2 λ 6 sin( λ 3 x)sin( λ 3 y) t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBcaWG4bGaaGykaiGa cohacaGGPbGaaiOBaiaaiIcacqaH7oaBcaWG5bGaaGykaiabgUcaRi abeU7aSnaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGaaiOBaiaa iIcacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG4bGaaGykaiGaco hacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaikdaaaGc caWG5bGaaGykaiaadshacqGHsisldaWcaaqaaiaaigdaaeaacaaIYa aaaiabeU7aSnaaCaaaleqabaGaaGOnaaaakiGacohacaGGPbGaaiOB aiaaiIcacqaH7oaBdaahaaWcbeqaaiaaiodaaaGccaWG4bGaaGykai GacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaioda aaGccaWG5bGaaGykaiaadshadaahaaWcbeqaaiaaikdaaaGccaaIUa aaaa@7365@

Поэтому согласно формуле (2.4) получаем

u=sin(x)sin(y)+ 0 t (sin(λx)sin(λy)+ λ 2 sin( λ 2 x)sin( λ 2 y)s 1 2 λ 6 sin( λ 3 x)sin( λ 3 y) s 2 )ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaaMb8Uaey4kaSIaaGzaVpaape dabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaaygW7caaMb8Ua aGikaiaaygW7cqGHsislciGGZbGaaiyAaiaac6gacaaIOaGaeq4UdW MaamiEaiaaiMcaciGGZbGaaiyAaiaac6gacaaIOaGaeq4UdWMaamyE aiaaiMcacaaMb8Uaey4kaSIaeq4UdW2aaWbaaSqabeaacaaIYaGaaG zaVdaakiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqa aiaaikdaaaGccaWG4bGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacq aH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG5bGaaGykaiaadohacaaM b8UaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH7oaBdaahaa WcbeqaaiaaiAdaaaGcciGGZbGaaiyAaiaac6gacaaIOaGaeq4UdW2a aWbaaSqabeaacaaIZaaaaOGaamiEaiaaiMcaciGGZbGaaiyAaiaac6 gacaaIOaGaeq4UdW2aaWbaaSqabeaacaaIZaaaaOGaamyEaiaaiMca caWGZbWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaadsgacaWGZbaaaa@9279@

=sin(x)sin(y)sin(λx)sin(λy)t+ 1 2 λ 2 sin( λ 2 x)sin( λ 2 y) t 2 1 6 λ 6 sin( λ 3 x)sin( λ 3 y) t 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaaiIcacaWG4bGaaGykaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaiabgkHiTiGacohacaGGPbGaaiOBaiaaiI cacqaH7oaBcaWG4bGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH 7oaBcaWG5bGaaGykaiaadshacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaaiabeU7aSnaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGa aiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWG4bGaaG ykaiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaa ikdaaaGccaWG5bGaaGykaiaadshadaahaaWcbeqaaiaaikdaaaGccq GHsisldaWcaaqaaiaaigdaaeaacaaI2aaaaiabeU7aSnaaCaaaleqa baGaaGOnaaaakiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaa WcbeqaaiaaiodaaaGccaWG4bGaaGykaiGacohacaGGPbGaaiOBaiaa iIcacqaH7oaBdaahaaWcbeqaaiaaiodaaaGccaWG5bGaaGykaiaads hadaahaaWcbeqaaiaaiodaaaGccaaIUaaaaa@8152@

Несложно заметить и показать (методом математической индукции), что на каждом n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  -м шаге решение определяется формулой

u=sin(x)sin(y)+ i=1 n1 (1) i i! λ i 2 i sin( λ i x)sin( λ i y) t i ,(x,y) Γ n ,t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 daciGGZbGaaiyAaiaac6gacaaIOaGaamiEaiaaiMcaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacqGHRaWkdaaeWbqabSqaaiaadM gacaaI9aGaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGc daWcaaqaaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam yAaaaaaOqaaiaadMgacaaIHaaaaiabeU7aSnaaCaaaleqabaGaamyA amaaCaaabeqaaiaaikdaaaGaeyOeI0IaamyAaaaakiGacohacaGGPb GaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaaiaadMgaaaGccaWG4bGa aGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH7oaBdaahaaWcbeqaai aadMgaaaGccaWG5bGaaGykaiaadshadaahaaWcbeqaaiaadMgaaaGc caaISaGaaGjbVlaaysW7caaIOaGaamiEaiaaiYcacaWG5bGaaGykai abgIGiolabfo5ahnaaBaaaleaacaWGUbaabeaakiaaiYcacaaMe8Ua aGjbVlaadshacaaI+aGaaGimaiaai6caaaa@7D27@  (2.5)

В следующих таблицах приведены результаты расчетов по формуле (2.5) для k=0,99, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIWaGaaGilaiaaiMdacaaI5aGaaGilaaaa@3D6A@   λ= 1 0,99 1,0101, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypamaalaaabaGaaGymaaqaaiaaicdacaaISaGaaGyoaiaaiMdaaaGa eyyrIaKaaGymaiaaiYcacaaIWaGaaGymaiaaicdacaaIXaGaaGilaa aa@4487@   n=10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGimaaaa@3B36@  и, для сравнения, значения при же аргументах точного решения.

 

Табл. 1. (x,y) Γ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGym aaqabaGccaaISaaaaa@40B0@   x=0,99π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI5aGaeqiWdaNaaGilaaaa@3F34@   y[0,99π,0,99π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI5aGaeqiWdaNa aGilaiaaicdacaaISaGaaGyoaiaaiMdacqaHapaCcaaIDbGaaGOlaa aa@4816@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,03141sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaigdacaaI0aGaaGymaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiaads haaaaaaa@455A@  

  0,03141sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaigdacaaI0aGaaGymaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaaaa@425D@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,03141sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaigdacaaI0aGaaGymaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaaaa@425D@  

  0,03141sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaigdacaaI0aGaaGymaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaaaa@425D@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,01156sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGymaiaaigdacaaI1aGaaGOnaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaaaa@4261@  

  0,03141sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaigdacaaI0aGaaGymaiGacohacaGGPbGaaiOB aiaaiIcacaWG5bGaaGykaaaa@425D@  

 

Табл. 2. (x,y) Γ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGOm aaqabaGccaaISaaaaa@40B1@   x=0,9801π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI4aGaaGimaiaaigdacqaHapaCcaaI Saaaaa@40A8@   y[0,9801π,0,9801π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI4aGaaGimaiaa igdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGioaiaaicdaca aIXaGaeqiWdaNaaGyxaiaai6caaaa@4AFE@  

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,062477sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaikdacaaI0aGaaG4naiaaiEdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4625@  

  0,062477sin(y)0,031414sin(1,010101y)t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaikdacaaI0aGaaG4naiaaiEdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacqGHsislcaaIWaGaaGilaiaaic dacaaIZaGaaGymaiaaisdacaaIXaGaaGinaiGacohacaGGPbGaaiOB aiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaGimaiaaigdacaaIWa GaaGymaiaadMhacaaIPaGaamiDaaaa@55F2@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,062477sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaikdacaaI0aGaaG4naiaaiEdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4328@  

  0,062477sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaikdacaaI0aGaaG4naiaaiEdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4328@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,022984sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOmaiaaikdacaaI5aGaaGioaiaaisdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4327@  

  0,062477sin(y)0,031414sin(1,010101y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaikdacaaI0aGaaG4naiaaiEdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacqGHsislcaaIWaGaaGilaiaaic dacaaIZaGaaGymaiaaisdacaaIXaGaaGinaiGacohacaGGPbGaaiOB aiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaGimaiaaigdacaaIWa GaaGymaiaadMhacaaIPaaaaa@54F9@  

 

Табл. 3. (x,y) Γ 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaG4m aaqabaGccaaISaaaaa@40B2@   x=0,9703π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI3aGaaGimaiaaiodacqaHapaCcaaI Saaaaa@40A9@   y[0,9703π,0,9703π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI3aGaaGimaiaa iodacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaG4naiaaicdaca aIZaGaeqiWdaNaaGyxaiaai6caaaa@4B00@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,093173sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGyoaiaaiodacaaIXaGaaG4naiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4622@  

  0,093173sin(y)0,06248sin(1,010101y)t +0,016027sin(1,020302y) t 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaicdacaaISaGaaGimaiaaiMdacaaIZaGaaGymaiaaiEdacaaI ZaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIWaGaaGOnaiaaikdacaaI0aGaaGioaiGacohacaGG PbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaGimaiaaig dacaaIWaGaaGymaiaadMhacaaIPaGaamiDaaqaaiabgUcaRiaaicda caaISaGaaGimaiaaigdacaaI2aGaaGimaiaaikdacaaI3aGaci4Cai aacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaikdacaaIWaGa aG4maiaaicdacaaIYaGaamyEaiaaiMcacaWG0bWaaWbaaSqabeaaca aIYaaaaaaaaaa@68F9@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,093173sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGyoaiaaiodacaaIXaGaaG4naiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4325@  

  0,093173sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGyoaiaaiodacaaIXaGaaG4naiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4325@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,034276sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4maiaaisdacaaIYaGaaG4naiaaiAdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4324@  

  0,093173sin(y)0,06248sin(1,010101y) +0,016027sin(1,020302y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiqaaa qaaiaaicdacaaISaGaaGimaiaaiMdacaaIZaGaaGymaiaaiEdacaaI ZaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIWaGaaGOnaiaaikdacaaI0aGaaGioaiGacohacaGG PbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaGimaiaaig dacaaIWaGaaGymaiaadMhacaaIPaaabaGaey4kaSIaaGimaiaaiYca caaIWaGaaGymaiaaiAdacaaIWaGaaGOmaiaaiEdaciGGZbGaaiyAai aac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmaiaaicdacaaIZaGa aGimaiaaikdacaWG5bGaaGykaaaaaaa@661E@  

 

Табл. 4. (x,y) Γ 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGin aaqabaGccaaISaaaaa@40B3@   x=0,9606π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI2aGaaGimaiaaiAdacqaHapaCcaaI Saaaaa@40AB@   y[0,9606π,0,9606π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI2aGaaGimaiaa iAdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGOnaiaaicdaca aI2aGaeqiWdaNaaGyxaiaai6caaaa@4B04@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,123475sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGOmaiaaiodacaaI0aGaaG4naiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4621@  

  0,123475sin(y)0,093176sin(1,010101y)t +0,031876sin(1,020302y) t 2 0,005562sin(1,030607y) t 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaaicdacaaISaGaaGymaiaaikdacaaIZaGaaGinaiaaiEdacaaI 1aGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIWaGaaGyoaiaaiodacaaIXaGaaG4naiaaiAdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaiaadshaaeaacqGHRaWk caaIWaGaaGilaiaaicdacaaIZaGaaGymaiaaiIdacaaI3aGaaGOnai GacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIYaGa aGimaiaaiodacaaIWaGaaGOmaiaadMhacaaIPaGaamiDamaaCaaale qabaGaaGOmaaaakiabgkHiTiaaicdacaaISaGaaGimaiaaicdacaaI 1aGaaGynaiaaiAdacaaIYaGaci4CaiaacMgacaGGUbGaaGikaiaaig dacaaISaGaaGimaiaaiodacaaIWaGaaGOnaiaaicdacaaI3aGaamyE aiaaiMcacaWG0bWaaWbaaSqabeaacaaIZaaaaaaaaaa@7D8F@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,123475sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGOmaiaaiodacaaI0aGaaG4naiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4324@  

  0,123475sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGOmaiaaiodacaaI0aGaaG4naiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4324@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,045424sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGinaiaaiwdacaaI0aGaaGOmaiaaisdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4321@  

  0,123475sin(y)0,093176sin(1,010101y) +0,031876sin(1,020302y)0,005562sin(1,030607y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaaicdacaaISaGaaGymaiaaikdacaaIZaGaaGinaiaaiEdacaaI 1aGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIWaGaaGyoaiaaiodacaaIXaGaaG4naiaaiAdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaaqaaiabgUcaRiaaicda caaISaGaaGimaiaaiodacaaIXaGaaGioaiaaiEdacaaI2aGaci4Cai aacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaikdacaaIWaGa aG4maiaaicdacaaIYaGaamyEaiaaiMcacqGHsislcaaIWaGaaGilai aaicdacaaIWaGaaGynaiaaiwdacaaI2aGaaGOmaiGacohacaGGPbGa aiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdaca aIWaGaaG4naiaadMhacaaIPaaaaaaa@78C7@  

 

Табл. 5. (x,y) Γ 5 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGyn aaqabaGccaaISaaaaa@40B4@   x=0,9510π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI1aGaaGymaiaaicdacqaHapaCcaaI Saaaaa@40A5@   y[0,9510π,0,9510π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI1aGaaGymaiaa icdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGynaiaaigdaca aIWaGaeqiWdaNaaGyxaiaai6caaaa@4AF8@  

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,153362sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGynaiaaiodacaaIZaGaaGOnaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@461F@  

  0,153362sin(y)0,123478sin(1,010101y)t +0,047535sin(1,020302y) t 2 0,011062sin(1,030607y) t 3 +0,001477sin(1,041016y) t 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabmqaaa qaaiaaicdacaaISaGaaGymaiaaiwdacaaIZaGaaG4maiaaiAdacaaI YaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIXaGaaGOmaiaaiodacaaI0aGaaG4naiaaiIdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaiaadshacaaMf8UaaGzb VlaaysW7caaMe8UaaGjbVlaaywW7caaMf8UaaGjcVdqaaiabgUcaRi aaicdacaaISaGaaGimaiaaisdacaaI3aGaaGynaiaaiodacaaI1aGa ci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaikdaca aIWaGaaG4maiaaicdacaaIYaGaamyEaiaaiMcacaWG0bWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGymaiaaig dacaaIWaGaaGOnaiaaikdaciGGZbGaaiyAaiaac6gacaaIOaGaaGym aiaaiYcacaaIWaGaaG4maiaaicdacaaI2aGaaGimaiaaiEdacaWG5b GaaGykaiaadshadaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkcaaI WaGaaGilaiaaicdacaaIWaGaaGymaiaaisdacaaI3aGaaG4naiGaco hacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaI0aGaaGym aiaaicdacaaIXaGaaGOnaiaadMhacaaIPaGaamiDamaaCaaaleqaba GaaGinaaaakiaai6caaaaaaa@9E7C@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,153362sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGynaiaaiodacaaIZaGaaGOnaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4322@  

  0,153362sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGynaiaaiodacaaIZaGaaGOnaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4322@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,056419sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGynaiaaiAdacaaI0aGaaGymaiaaiMdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4327@  

  0,153362sin(y)0,123478sin(1,010101y) +0,047535sin(1,020302y)0,011062sin(1,030607y) +0,001477sin(1,041016y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaaiaaicdacaaISaGaaGymaiaaiwdacaaIZaGaaG4maiaaiAdacaaI YaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIXaGaaGOmaiaaiodacaaI0aGaaG4naiaaiIdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaaqaaiabgUcaRiaaicda caaISaGaaGimaiaaisdacaaI3aGaaGynaiaaiodacaaI1aGaci4Cai aacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaikdacaaIWaGa aG4maiaaicdacaaIYaGaamyEaiaaiMcacqGHsislcaaIWaGaaGilai aaicdacaaIXaGaaGymaiaaicdacaaI2aGaaGOmaiGacohacaGGPbGa aiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdaca aIWaGaaG4naiaadMhacaaIPaaabaGaaGzbVlaaywW7caaMe8UaaGjb VlaaysW7caaMf8UaaGzbVlaaysW7caaMe8UaaGjbVlaaywW7caaMf8 UaaGjbVlaaysW7caaMf8UaaGzbVlaaysW7caaMe8Uaey4kaSIaaGim aiaaiYcacaaIWaGaaGimaiaaigdacaaI0aGaaG4naiaaiEdaciGGZb GaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGinaiaaigda caaIWaGaaGymaiaaiAdacaWG5bGaaGykaaaaaaa@A684@  

 

Табл. 6. (x,y) Γ 6 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGOn aaqabaGccaaISaaaaa@40B5@   x=0,9415π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaI0aGaaGymaiaaiwdacqaHapaCcaaI Saaaaa@40A9@   y[0,9415π,0,9415π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaI0aGaaGymaiaa iwdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGinaiaaigdaca aI1aGaeqiWdaNaaGyxaiaai6caaaa@4B00@  

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,182812sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGioaiaaikdacaaI4aGaaGymaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4621@  

  0,182812sin(y)0,153365sin(1,010101y)t +0,062994sin(1,020302y) t 2 0,016496sin(1,030607y) t 3 +0,002937sin(1,041016y) t 4 0,00032sin(1,05153y) t 5 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabmqaaa qaaiaaicdacaaISaGaaGymaiaaiIdacaaIYaGaaGioaiaaigdacaaI YaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIXaGaaGynaiaaiodacaaIZaGaaGOnaiaaiwdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaiaadshacaaMf8UaaGzb VlaaysW7caaMe8UaaGjbVlaaywW7caaMf8UaaGjcVdqaaiabgUcaRi aaicdacaaISaGaaGimaiaaiAdacaaIYaGaaGyoaiaaiMdacaaI0aGa ci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaikdaca aIWaGaaG4maiaaicdacaaIYaGaamyEaiaaiMcacaWG0bWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGymaiaaiA dacaaI0aGaaGyoaiaaiAdaciGGZbGaaiyAaiaac6gacaaIOaGaaGym aiaaiYcacaaIWaGaaG4maiaaicdacaaI2aGaaGimaiaaiEdacaWG5b GaaGykaiaadshadaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkcaaI WaGaaGilaiaaicdacaaIWaGaaGOmaiaaiMdacaaIZaGaaG4naiGaco hacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaI0aGaaGym aiaaicdacaaIXaGaaGOnaiaadMhacaaIPaGaamiDamaaCaaaleqaba GaaGinaaaakiabgkHiTiaaicdacaaISaGaaGimaiaaicdacaaIWaGa aG4maiaaikdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcaca aIWaGaaGynaiaaigdacaaI1aGaaG4maiaadMhacaaIPaGaamiDamaa CaaaleqabaGaaGynaaaakiaai6caaaaaaa@B0E3@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,182812sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGioaiaaikdacaaI4aGaaGymaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4324@  

  0,182812sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGioaiaaikdacaaI4aGaaGymaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4324@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,067253sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGOnaiaaiEdacaaIYaGaaGynaiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4325@  

  0,182812sin(y)0,153365sin(1,010101y) +0,062994sin(1,020302y)0,016496sin(1,030607y) +0,002937sin(1,041016y)0,00032sin(1,05153y). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaaiaaicdacaaISaGaaGymaiaaiIdacaaIYaGaaGioaiaaigdacaaI YaGaci4CaiaacMgacaGGUbGaaGikaiaadMhacaaIPaGaeyOeI0IaaG imaiaaiYcacaaIXaGaaGynaiaaiodacaaIZaGaaGOnaiaaiwdaciGG ZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGymaiaaic dacaaIXaGaaGimaiaaigdacaWG5bGaaGykaiaaywW7caaMf8UaaGjb VlaaysW7caaMe8UaaGzbVlaaywW7caaMi8oabaGaey4kaSIaaGimai aaiYcacaaIWaGaaGOnaiaaikdacaaI5aGaaGyoaiaaisdaciGGZbGa aiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmaiaaicdaca aIZaGaaGimaiaaikdacaWG5bGaaGykaiabgkHiTiaaicdacaaISaGa aGimaiaaigdacaaI2aGaaGinaiaaiMdacaaI2aGaci4CaiaacMgaca GGUbGaaGikaiaaigdacaaISaGaaGimaiaaiodacaaIWaGaaGOnaiaa icdacaaI3aGaamyEaiaaiMcaaeaacqGHRaWkcaaIWaGaaGilaiaaic dacaaIWaGaaGOmaiaaiMdacaaIZaGaaG4naiGacohacaGGPbGaaiOB aiaaiIcacaaIXaGaaGilaiaaicdacaaI0aGaaGymaiaaicdacaaIXa GaaGOnaiaadMhacaaIPaGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGim aiaaicdacaaIZaGaaGOmaiGacohacaGGPbGaaiOBaiaaiIcacaaIXa GaaGilaiaaicdacaaI1aGaaGymaiaaiwdacaaIZaGaamyEaiaaiMca caaIUaaaaaaa@A832@  

 

Табл. 7. (x,y) Γ 7 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaG4n aaqabaGccaaISaaaaa@40B6@   x=0,9321π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaIZaGaaGOmaiaaigdacqaHapaCcaaI Saaaaa@40A5@   y[0,9321π,0,9321π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaIZaGaaGOmaiaa igdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaG4maiaaikdaca aIXaGaeqiWdaNaaGyxaiaai6caaaa@4AF8@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,211806sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGymaiaaigdacaaI4aGaaGimaiaaiAdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@461D@  

  0,211806sin(y)0,182815sin(1,010101y)t +0,078241sin(1,020302y) t 2 0,02186sin(1,030607y) t 3 +0,00438sin(1,041016y) t 4 0,000637sin(1,05153y) t 5 +0,000059sin(1,062151y) t 6 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabqqaaa aabaGaaGimaiaaiYcacaaIYaGaaGymaiaaigdacaaI4aGaaGimaiaa iAdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaigdacaaI4aGaaGOmaiaaiIdacaaIXaGaaGynaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaamiDaiaaywW7caaM f8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMi8oabaGaey4kaS IaaGimaiaaiYcacaaIWaGaaG4naiaaiIdacaaIYaGaaGinaiaaigda ciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmai aaicdacaaIZaGaaGimaiaaikdacaWG5bGaaGykaiaadshadaahaaWc beqaaiaaikdaaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIYaGaaG ymaiaaiIdacaaI2aGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaI SaGaaGimaiaaiodacaaIWaGaaGOnaiaaicdacaaI3aGaamyEaiaaiM cacaWG0bWaaWbaaSqabeaacaaIZaaaaaGcbaGaey4kaSIaaGimaiaa iYcacaaIWaGaaGimaiaaisdacaaIZaGaaGioaiGacohacaGGPbGaai OBaiaaiIcacaaIXaGaaGilaiaaicdacaaI0aGaaGymaiaaicdacaaI XaGaaGOnaiaadMhacaaIPaGaamiDamaaCaaaleqabaGaaGinaaaaki abgkHiTiaaicdacaaISaGaaGimaiaaicdacaaIWaGaaGOnaiaaioda caaI3aGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimai aaiwdacaaIXaGaaGynaiaaiodacaWG5bGaaGykaiaadshadaahaaWc beqaaiaaiwdaaaaakeaacqGHRaWkcaaIWaGaaGilaiaaicdacaaIWa GaaGimaiaaicdacaaI1aGaaGyoaiGacohacaGGPbGaaiOBaiaaiIca caaIXaGaaGilaiaaicdacaaI2aGaaGOmaiaaigdacaaI1aGaaGymai aadMhacaaIPaGaamiDamaaCaaaleqabaGaaGOnaaaakiaai6caaaaa aa@C3E0@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,211806sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGymaiaaigdacaaI4aGaaGimaiaaiAdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4320@  

  0,211806sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGymaiaaigdacaaI4aGaaGimaiaaiAdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4320@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,077919sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaG4naiaaiEdacaaI5aGaaGymaiaaiMdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@432F@  

  0,211806sin(y)0,182815sin(1,010101y) +0,078241sin(1,020302y)0,02186sin(1,030607y) +0,00438sin(1,041016y)0,000637sin(1,05153y) +0,000059sin(1,062151y). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaa aabaGaaGimaiaaiYcacaaIYaGaaGymaiaaigdacaaI4aGaaGimaiaa iAdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaigdacaaI4aGaaGOmaiaaiIdacaaIXaGaaGynaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaaGzbVlaaywW7caaM e8UaaGjbVlaaysW7caaMf8UaaGzbVlaayIW7aeaacqGHRaWkcaaIWa GaaGilaiaaicdacaaI3aGaaGioaiaaikdacaaI0aGaaGymaiGacoha caGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIYaGaaGimai aaiodacaaIWaGaaGOmaiaadMhacaaIPaGaeyOeI0IaaGimaiaaiYca caaIWaGaaGOmaiaaigdacaaI4aGaaGOnaiGacohacaGGPbGaaiOBai aaiIcacaaIXaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdacaaIWaGa aG4naiaadMhacaaIPaaabaGaey4kaSIaaGimaiaaiYcacaaIWaGaaG imaiaaisdacaaIZaGaaGioaiGacohacaGGPbGaaiOBaiaaiIcacaaI XaGaaGilaiaaicdacaaI0aGaaGymaiaaicdacaaIXaGaaGOnaiaadM hacaaIPaGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGimaiaaicdacaaI 2aGaaG4maiaaiEdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiY cacaaIWaGaaGynaiaaigdacaaI1aGaaG4maiaadMhacaaIPaaabaGa ey4kaSIaaGimaiaaiYcacaaIWaGaaGimaiaaicdacaaIWaGaaGynai aaiMdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGa aGOnaiaaikdacaaIXaGaaGynaiaaigdacaWG5bGaaGykaiaai6caaa aaaa@B93F@  

 

Табл. 8. (x,y) Γ 8 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGio aaqabaGccaaISaaaaa@40B7@   x=0,9227π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaIYaGaaGOmaiaaiEdacqaHapaCcaaI Saaaaa@40AA@   y[0,9227π,0,9227π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaIYaGaaGOmaiaa iEdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGOmaiaaikdaca aI3aGaeqiWdaNaaGyxaiaai6caaaa@4B02@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,240329sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGinaiaaicdacaaIZaGaaGOmaiaaiMdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@461F@  

  0,240329sin(y)0,211809sin(1,010101y)t +0,093265sin(1,020302y) t 2 0,02715sin(1,030607y) t 3 +0,005805sin(1,041016y) t 4 0,000949sin(1,05153y) t 5 +0,000117sin(1,062151y) t 6 0,00001sin(1,072879y) t 7 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabqqaaa aabaGaaGimaiaaiYcacaaIYaGaaGinaiaaicdacaaIZaGaaGOmaiaa iMdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaIXaGaaGymaiaaiIdacaaIWaGaaGyoaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaamiDaiaaywW7caaM f8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMi8oabaGaey4kaS IaaGimaiaaiYcacaaIWaGaaGyoaiaaiodacaaIYaGaaGOnaiaaiwda ciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmai aaicdacaaIZaGaaGimaiaaikdacaWG5bGaaGykaiaadshadaahaaWc beqaaiaaikdaaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIYaGaaG 4naiaaigdacaaI1aGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaI SaGaaGimaiaaiodacaaIWaGaaGOnaiaaicdacaaI3aGaamyEaiaaiM cacaWG0bWaaWbaaSqabeaacaaIZaaaaaGcbaGaey4kaSIaaGimaiaa iYcacaaIWaGaaGimaiaaiwdacaaI4aGaaGimaiaaiwdaciGGZbGaai yAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGinaiaaigdacaaI WaGaaGymaiaaiAdacaWG5bGaaGykaiaadshadaahaaWcbeqaaiaais daaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaiMda caaI0aGaaGyoaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilai aaicdacaaI1aGaaGymaiaaiwdacaaIZaGaamyEaiaaiMcacaWG0bWa aWbaaSqabeaacaaI1aaaaaGcbaGaey4kaSIaaGimaiaaiYcacaaIWa GaaGimaiaaicdacaaIXaGaaGymaiaaiEdaciGGZbGaaiyAaiaac6ga caaIOaGaaGymaiaaiYcacaaIWaGaaGOnaiaaikdacaaIXaGaaGynai aaigdacaWG5bGaaGykaiaadshadaahaaWcbeqaaiaaiAdaaaGccqGH sislcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaicdacaaIXaGaci 4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaiEdacaaI YaGaaGioaiaaiEdacaaI5aGaamyEaiaaiMcacaWG0bWaaWbaaSqabe aacaaI3aaaaOGaaGOlaaaaaaa@D7B7@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,240329sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGinaiaaicdacaaIZaGaaGOmaiaaiMdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4322@  

  0,240329sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGinaiaaicdacaaIZaGaaGOmaiaaiMdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4322@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,088412sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGioaiaaiIdacaaI0aGaaGymaiaaikdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4325@  

  0,240329sin(y)0,211809sin(1,010101y) +0,093265sin(1,020302y)0,02715sin(1,030607y) +0,005805sin(1,041016y)0,000949sin(1,05153y) +0,000117sin(1,062151y)0,00001sin(1,072879y). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaa aabaGaaGimaiaaiYcacaaIYaGaaGinaiaaicdacaaIZaGaaGOmaiaa iMdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaIXaGaaGymaiaaiIdacaaIWaGaaGyoaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaaGzbVlaaywW7caaM e8UaaGjbVlaaysW7caaMf8UaaGzbVlaayIW7aeaacqGHRaWkcaaIWa GaaGilaiaaicdacaaI5aGaaG4maiaaikdacaaI2aGaaGynaiGacoha caGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIYaGaaGimai aaiodacaaIWaGaaGOmaiaadMhacaaIPaGaeyOeI0IaaGimaiaaiYca caaIWaGaaGOmaiaaiEdacaaIXaGaaGynaiGacohacaGGPbGaaiOBai aaiIcacaaIXaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdacaaIWaGa aG4naiaadMhacaaIPaaabaGaey4kaSIaaGimaiaaiYcacaaIWaGaaG imaiaaiwdacaaI4aGaaGimaiaaiwdaciGGZbGaaiyAaiaac6gacaaI OaGaaGymaiaaiYcacaaIWaGaaGinaiaaigdacaaIWaGaaGymaiaaiA dacaWG5bGaaGykaiabgkHiTiaaicdacaaISaGaaGimaiaaicdacaaI WaGaaGyoaiaaisdacaaI5aGaci4CaiaacMgacaGGUbGaaGikaiaaig dacaaISaGaaGimaiaaiwdacaaIXaGaaGynaiaaiodacaWG5bGaaGyk aaqaaiabgUcaRiaaicdacaaISaGaaGimaiaaicdacaaIWaGaaGymai aaigdacaaI3aGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGa aGimaiaaiAdacaaIYaGaaGymaiaaiwdacaaIXaGaamyEaiaaiMcacq GHsislcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaicdacaaIXaGa ci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaiEdaca aIYaGaaGioaiaaiEdacaaI5aGaamyEaiaaiMcacaaIUaaaaaaa@CB25@  

  

Табл. 9. (x,y) Γ 9 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGyo aaqabaGccaaISaaaaa@40B8@   x=0,9135π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaIXaGaaG4maiaaiwdacqaHapaCcaaI Saaaaa@40A8@   y[0,9135π,0,9135π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaIXaGaaG4maiaa iwdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGymaiaaiodaca aI1aGaeqiWdaNaaGyxaiaai6caaaa@4AFE@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,268363sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGOnaiaaiIdacaaIZaGaaGOnaiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4627@  

  0,268363sin(y)0,240332sin(1,010101y)t +0,108056sin(1,020302y) t 2 0,032364sin(1,030607y) t 3 +0,00721sin(1,041016y) t 4 0,001258sin(1,05153y) t 5 +0,000175sin(1,062151y) t 6 0,000019sin(1,072879y) t 7 +0,000001sin(1,083715y) t 8 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabuqaaa aabaGaaGimaiaaiYcacaaIYaGaaGOnaiaaiIdacaaIZaGaaGOnaiaa iodaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaI0aGaaGimaiaaiodacaaIZaGaaGOmaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaamiDaiaaywW7caaM f8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMi8oabaGaey4kaS IaaGimaiaaiYcacaaIXaGaaGimaiaaiIdacaaIWaGaaGynaiaaiAda ciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmai aaicdacaaIZaGaaGimaiaaikdacaWG5bGaaGykaiaadshadaahaaWc beqaaiaaikdaaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIZaGaaG OmaiaaiodacaaI2aGaaGinaiGacohacaGGPbGaaiOBaiaaiIcacaaI XaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdacaaIWaGaaG4naiaadM hacaaIPaGaamiDamaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRiaa icdacaaISaGaaGimaiaaicdacaaI3aGaaGOmaiaaigdaciGGZbGaai yAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGinaiaaigdacaaI WaGaaGymaiaaiAdacaWG5bGaaGykaiaadshadaahaaWcbeqaaiaais daaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIWaGaaGymaiaaikda caaI1aGaaGioaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilai aaicdacaaI1aGaaGymaiaaiwdacaaIZaGaamyEaiaaiMcacaWG0bWa aWbaaSqabeaacaaI1aaaaaGcbaGaey4kaSIaaGimaiaaiYcacaaIWa GaaGimaiaaicdacaaIXaGaaG4naiaaiwdaciGGZbGaaiyAaiaac6ga caaIOaGaaGymaiaaiYcacaaIWaGaaGOnaiaaikdacaaIXaGaaGynai aaigdacaWG5bGaaGykaiaadshadaahaaWcbeqaaiaaiAdaaaGccqGH sislcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaicdacaaIXaGaaG yoaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaI 3aGaaGOmaiaaiIdacaaI3aGaaGyoaiaadMhacaaIPaGaamiDamaaCa aaleqabaGaaG4naaaaaOqaaiabgUcaRiaaicdacaaISaGaaGimaiaa icdacaaIWaGaaGimaiaaicdacaaIXaGaci4CaiaacMgacaGGUbGaaG ikaiaaigdacaaISaGaaGimaiaaiIdacaaIZaGaaG4naiaaigdacaaI 1aGaamyEaiaaiMcacaWG0bWaaWbaaSqabeaacaaI4aaaaOGaaGOlaa aaaaa@EC32@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,268363sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGOnaiaaiIdacaaIZaGaaGOnaiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@432A@  

  0,268363sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGOnaiaaiIdacaaIZaGaaGOnaiaaiodaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@432A@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,098725sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIWaGaaGyoaiaaiIdacaaI3aGaaGOmaiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@432D@  

  0,268363sin(y)0,240332sin(1,010101y) +0,108056sin(1,020302y)0,032364sin(1,030607y) +0,00721sin(1,041016y)0,001258sin(1,05153y) +0,000175sin(1,062151y)0,000019sin(1,072879y) +0,000001sin(1,083715y). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuqaaa aabaGaaGimaiaaiYcacaaIYaGaaGOnaiaaiIdacaaIZaGaaGOnaiaa iodaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaI0aGaaGimaiaaiodacaaIZaGaaGOmaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaaGzbVlaaywW7caaM e8UaaGjbVlaaysW7caaMf8UaaGzbVlaayIW7aeaacqGHRaWkcaaIWa GaaGilaiaaigdacaaIWaGaaGioaiaaicdacaaI1aGaaGOnaiGacoha caGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIYaGaaGimai aaiodacaaIWaGaaGOmaiaadMhacaaIPaGaeyOeI0IaaGimaiaaiYca caaIWaGaaG4maiaaikdacaaIZaGaaGOnaiaaisdaciGGZbGaaiyAai aac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaG4maiaaicdacaaI2aGa aGimaiaaiEdacaWG5bGaaGykaaqaaiabgUcaRiaaicdacaaISaGaaG imaiaaicdacaaI3aGaaGOmaiaaigdaciGGZbGaaiyAaiaac6gacaaI OaGaaGymaiaaiYcacaaIWaGaaGinaiaaigdacaaIWaGaaGymaiaaiA dacaWG5bGaaGykaiabgkHiTiaaicdacaaISaGaaGimaiaaicdacaaI XaGaaGOmaiaaiwdacaaI4aGaci4CaiaacMgacaGGUbGaaGikaiaaig dacaaISaGaaGimaiaaiwdacaaIXaGaaGynaiaaiodacaWG5bGaaGyk aaqaaiabgUcaRiaaicdacaaISaGaaGimaiaaicdacaaIWaGaaGymai aaiEdacaaI1aGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGa aGimaiaaiAdacaaIYaGaaGymaiaaiwdacaaIXaGaamyEaiaaiMcacq GHsislcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaicdacaaIXaGa aGyoaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdaca aI3aGaaGOmaiaaiIdacaaI3aGaaGyoaiaadMhacaaIPaaabaGaey4k aSIaaGimaiaaiYcacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaaig daciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGio aiaaiodacaaI3aGaaGymaiaaiwdacaWG5bGaaGykaiaai6caaaaaaa@DDAE@  

 

Табл. 10. (x,y) Γ 10 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHtoWrdaWgaaWcbaGaaGym aiaaicdaaeqaaOGaaGilaaaa@416A@   x=0,9044π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaiMdacaaIWaGaaGinaiaaisdacqaHapaCcaaI Saaaaa@40A7@   y[0,9044π,0,9044π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaaiUfacqGHsislcaaIWaGaaGilaiaaiMdacaaIWaGaaGinaiaa isdacqaHapaCcaaISaGaaGimaiaaiYcacaaI5aGaaGimaiaaisdaca aI0aGaeqiWdaNaaGyxaiaai6caaaa@4AFC@

 время

 точное решение

 приближенное решение

t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  

  0,295895sin(y) e t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGyoaiaaiwdacaaI4aGaaGyoaiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcaWG0baaaaaa@4631@  

  0,295895sin(y)0,268366sin(1,010101y)t +0,122607sin(1,020302y) t 2 0,037497sin(1,030607y) t 3 +0,008594sin(1,041016y) t 4 0,001563sin(1,05153y) t 5 +0,000232sin(1,062151y) t 6 0,000028sin(1,072879y) t 7 +0,000003sin(1,083715y) t 8 0,0000002sin(1,0946602y) t 9 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabuqaaa aabaGaaGimaiaaiYcacaaIYaGaaGyoaiaaiwdacaaI4aGaaGyoaiaa iwdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaI2aGaaGioaiaaiodacaaI2aGaaGOnaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaamiDaiaaywW7caaM f8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMi8oabaGaey4kaS IaaGimaiaaiYcacaaIXaGaaGOmaiaaikdacaaI2aGaaGimaiaaiEda ciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaGOmai aaicdacaaIZaGaaGimaiaaikdacaWG5bGaaGykaiaadshadaahaaWc beqaaiaaikdaaaGccqGHsislcaaIWaGaaGilaiaaicdacaaIZaGaaG 4naiaaisdacaaI5aGaaG4naiGacohacaGGPbGaaiOBaiaaiIcacaaI XaGaaGilaiaaicdacaaIZaGaaGimaiaaiAdacaaIWaGaaG4naiaadM hacaaIPaGaamiDamaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRiaa icdacaaISaGaaGimaiaaicdacaaI4aGaaGynaiaaiMdacaaI0aGaci 4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGimaiaaisdacaaI XaGaaGimaiaaigdacaaI2aGaamyEaiaaiMcacaWG0bWaaWbaaSqabe aacaaI0aaaaOGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGimaiaaigda caaI1aGaaGOnaiaaiodaciGGZbGaaiyAaiaac6gacaaIOaGaaGymai aaiYcacaaIWaGaaGynaiaaigdacaaI1aGaaG4maiaadMhacaaIPaGa amiDamaaCaaaleqabaGaaGynaaaaaOqaaiabgUcaRiaaicdacaaISa GaaGimaiaaicdacaaIWaGaaGOmaiaaiodacaaIYaGaci4CaiaacMga caGGUbGaaGikaiaaigdacaaISaGaaGimaiaaiAdacaaIYaGaaGymai aaiwdacaaIXaGaamyEaiaaiMcacaWG0bWaaWbaaSqabeaacaaI2aaa aOGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGimaiaaicdacaaIWaGaaG OmaiaaiIdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaI WaGaaG4naiaaikdacaaI4aGaaG4naiaaiMdacaWG5bGaaGykaiaads hadaahaaWcbeqaaiaaiEdaaaaakeaacqGHRaWkcaaIWaGaaGilaiaa icdacaaIWaGaaGimaiaaicdacaaIWaGaaG4maiGacohacaGGPbGaai OBaiaaiIcacaaIXaGaaGilaiaaicdacaaI4aGaaG4maiaaiEdacaaI XaGaaGynaiaadMhacaaIPaGaamiDamaaCaaaleqabaGaaGioaaaaki abgkHiTiaaicdacaaISaGaaGimaiaaicdacaaIWaGaaGimaiaaicda caaIWaGaaGOmaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilai aaicdacaaI5aGaaGinaiaaiAdacaaI2aGaaGimaiaaikdacaWG5bGa aGykaiaadshadaahaaWcbeqaaiaaiMdaaaGccaaIUaaaaaaa@0261@  

  0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  

  0,295895sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGyoaiaaiwdacaaI4aGaaGyoaiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4334@  

  0,295895sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIYaGaaGyoaiaaiwdacaaI4aGaaGyoaiaaiwdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4334@  

  1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  

  0,108854sin(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY cacaaIXaGaaGimaiaaiIdacaaI4aGaaGynaiaaisdaciGGZbGaaiyA aiaac6gacaaIOaGaamyEaiaaiMcaaaa@4328@  

  0,295895sin(y)0,268366sin(1,010101y) +0,122607sin(1,020302y)0,037497sin(1,030607y) +0,008594sin(1,041016y)0,001563sin(1,05153y) +0,000232sin(1,062151y)0,000028sin(1,072879y) +0,000003sin(1,083715y)0,0000002sin(1,0946602y). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuqaaa aabaGaaGimaiaaiYcacaaIYaGaaGyoaiaaiwdacaaI4aGaaGyoaiaa iwdaciGGZbGaaiyAaiaac6gacaaIOaGaamyEaiaaiMcacqGHsislca aIWaGaaGilaiaaikdacaaI2aGaaGioaiaaiodacaaI2aGaaGOnaiGa cohacaGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIXaGaaG imaiaaigdacaaIWaGaaGymaiaadMhacaaIPaGaaGzbVlaaywW7caaM e8UaaGjbVlaaysW7caaMf8UaaGzbVlaayIW7aeaacqGHRaWkcaaIWa GaaGilaiaaigdacaaIYaGaaGOmaiaaiAdacaaIWaGaaG4naiGacoha caGGPbGaaiOBaiaaiIcacaaIXaGaaGilaiaaicdacaaIYaGaaGimai aaiodacaaIWaGaaGOmaiaadMhacaaIPaGaeyOeI0IaaGimaiaaiYca caaIWaGaaG4maiaaiEdacaaI0aGaaGyoaiaaiEdaciGGZbGaaiyAai aac6gacaaIOaGaaGymaiaaiYcacaaIWaGaaG4maiaaicdacaaI2aGa aGimaiaaiEdacaWG5bGaaGykaaqaaiabgUcaRiaaicdacaaISaGaaG imaiaaicdacaaI4aGaaGynaiaaiMdacaaI0aGaci4CaiaacMgacaGG UbGaaGikaiaaigdacaaISaGaaGimaiaaisdacaaIXaGaaGimaiaaig dacaaI2aGaamyEaiaaiMcacqGHsislcaaIWaGaaGilaiaaicdacaaI WaGaaGymaiaaiwdacaaI2aGaaG4maiGacohacaGGPbGaaiOBaiaaiI cacaaIXaGaaGilaiaaicdacaaI1aGaaGymaiaaiwdacaaIZaGaamyE aiaaiMcaaeaacqGHRaWkcaaIWaGaaGilaiaaicdacaaIWaGaaGimai aaikdacaaIZaGaaGOmaiGacohacaGGPbGaaiOBaiaaiIcacaaIXaGa aGilaiaaicdacaaI2aGaaGOmaiaaigdacaaI1aGaaGymaiaadMhaca aIPaGaeyOeI0IaaGimaiaaiYcacaaIWaGaaGimaiaaicdacaaIWaGa aGOmaiaaiIdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcaca aIWaGaaG4naiaaikdacaaI4aGaaG4naiaaiMdacaWG5bGaaGykaaqa aiabgUcaRiaaicdacaaISaGaaGimaiaaicdacaaIWaGaaGimaiaaic dacaaIZaGaci4CaiaacMgacaGGUbGaaGikaiaaigdacaaISaGaaGim aiaaiIdacaaIZaGaaG4naiaaigdacaaI1aGaamyEaiaaiMcacqGHsi slcaaIWaGaaGilaiaaicdacaaIWaGaaGimaiaaicdacaaIWaGaaGim aiaaikdaciGGZbGaaiyAaiaac6gacaaIOaGaaGymaiaaiYcacaaIWa GaaGyoaiaaisdacaaI2aGaaGOnaiaaicdacaaIYaGaamyEaiaaiMca caaIUaaaaaaa@F1EA@  

 

3. Некоторые обобщения

Предложенный выше метод решения уравнений в частных производных достаточно универсален. Он без каких-либо значимых изменений распространяется на область D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaaiY caaaa@3986@  принадлежащую пространству n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaaaaa@43DF@  при любом n2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaaikdacaaIUaaaaa@3C34@  Также метод применим к уравнению, полученному из (1.1) заменой в левой части производной u t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaaaaa@3CD6@  линейным дифференциальным оператором первого порядка

L t u= u t +Pu, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectdaWgaaWcbaGa amiDaaqabaGccaWG1bGaaGypamaalaaabaGaeyOaIyRaamyDaaqaai abgkGi2kaadshaaaGaey4kaSIae83dXdLaamyDaiaaiYcaaaa@4EBB@

где P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepuaaa@4366@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  некоторая функция, определенная на D× + . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabgE na0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaSbaaSqaaiabgUcaRaqabaGccaaIUaaaaa@476F@  Также может рассматриваться и линейный дифференциальный оператор более высокого порядка. Кроме того, вместо начального условия (1.2) можно рассматривать краевое условие.

Для сокращения записи по-прежнему полагаем область D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@38D0@  плоской. Рассмотрим краевую задачу вида

L t u=f(t,x,y,u, u x , u y , 2 u x 2 , 2 u y 2 , 2 u xy ),t[0,1],(x,y)D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectdaWgaaWcbaGa amiDaaqabaGccaWG1bGaaGypaiaadAgacaaIOaGaamiDaiaaiYcaca WG4bGaaGilaiaadMhacaaISaGaamyDaiaaiYcadaWcaaqaaiabgkGi 2kaadwhaaeaacqGHciITcaWG4baaaiaaiYcadaWcaaqaaiabgkGi2k aadwhaaeaacqGHciITcaWG5baaaiaaiYcadaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG4bWaaWbaaS qabeaacaaIYaaaaaaakiaaiYcadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadwhaaeaacqGHciITcaWG5bWaaWbaaSqabeaaca aIYaaaaaaakiaaiYcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaakiaadwhaaeaacqGHciITcaWG4bGaeyOaIyRaamyEaaaacaaIPa GaaGilaiaaysW7caaMe8UaamiDaiabgIGiolaaiUfacaaIWaGaaGil aiaaigdacaaIDbGaaGilaiaaysW7caaMe8UaaGikaiaadIhacaaISa GaamyEaiaaiMcacqGHiiIZcaWGebGaaGilaaaa@85E4@                                (3.1)

Au(x,y,0)+Bu(x,y,1)=ϑ(x,y),(x,y)D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaWG1bGaaGik aiaadIhacaaISaGaamyEaiaaiYcacaaIWaGaaGykaiabgUcaRiab=X sicjaadwhacaaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaaigdacaaI PaGaaGypaiabeg9akjaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaG ilaiaaysW7caaMe8UaaGikaiaadIhacaaISaGaamyEaiaaiMcacqGH iiIZcaWGebGaaGilaaaa@63AD@                                                    (3.2)

u | (x,y) Γ 0 = φ 0 (t),t[0,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY hadaWgaaWcbaGaaGikaiaadIhacaaISaGaamyEaiaaiMcacqGHiiIZ cqqHtoWrdaWgaaqaaiaaicdaaeqaaaqabaGccaaI9aGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaysW7 caaMe8UaamiDaiabgIGiolaaiUfacaaIWaGaaGilaiaaigdacaaIDb GaaGOlaaaa@52E8@                                                                       (3.3)

Здесь f,ϑ, φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiY cacqaHrpGscaaISaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaaaa@3EA9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные непрерывные функции, A,B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaISaGae8hl Hieaaa@4512@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные числа, из которых хотя бы одно отлично от нуля.

Будем предполагать, что при всех (x,y)D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcaWGebaaaa@3E6A@  выполнено неравенство

A+B e 0 1 P(x,y,s)ds 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcqGHRaWkcqWF SeIqcaWGLbWaaWbaaSqabeaadaWdXaqabeaacaaIWaaabaGaaGymaa qdcqGHRiI8aSGae83dXdLaaGikaiaadIhacaaISaGaamyEaiaaiYca caWGZbGaaGykaiaadsgacaWGZbaaaOGaeyiyIKRaaGimaiaaiYcaaa a@56AF@

которое необходимо и достаточно для однозначной разрешимости краевой задачи c условием (12) для уравнения

u t +P(x,y,t)u=f(x,y,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1baabaGaeyOaIyRaamiDaaaacqGHRaWktuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=9q8qjaaiIcacaWG4b GaaGilaiaadMhacaaISaGaamiDaiaaiMcacaWG1bGaaGypaiaadAga caaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaadshacaaIPaGaaGOlaa aa@5805@  (3.4)

В этом случае решение задачи (3.4), (3.2) определяется формулой

u(t,x,y)=U(t,x,y)ϑ(x,y)+ 0 1 G(x,y,t,s)f(x,y,s)ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamyEaiaaiMcacaaI9aGaamyv aiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamyEaiaaiMcacqaHrp GscaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgUcaRmaapedabeWc baGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadEeacaaIOaGaamiEai aaiYcacaWG5bGaaGilaiaadshacaaISaGaam4CaiaaiMcacaWGMbGa aGikaiaadIhacaaISaGaamyEaiaaiYcacaWGZbGaaGykaiaadsgaca WGZbGaaGilaaaa@61FA@

где

U(t,x,y)= e 0 t P(x,y,s)ds A+B e 0 1 P(x,y,s)ds ,G(x,y,t,s)= A e s t P(x,y,s)ds A+B e 0 1 P(x,y,s)ds , 0st1, B e s t P(x,y,s)ds A+B e 0 1 P(x,y,s)ds , 0t<s1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamyEaiaaiMcacaaI9aWaaSaa aeaacaWGLbWaaWbaaSqabeaadaWdXaqabeaacaaIWaaabaGaamiDaa qdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faWccqWFpepucaaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaadohaca aIPaGaamizaiaadohaaaaakeaacqWFaeFqcqGHRaWkcqWFSeIqcaWG LbWaaWbaaSqabeaadaWdXaqabeaacaaIWaaabaGaaGymaaqdcqGHRi I8aSGae83dXdLaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWGZbGa aGykaiaadsgacaWGZbaaaaaakiaaiYcacaaMe8Uaam4raiaaiIcaca WG4bGaaGilaiaadMhacaaISaGaamiDaiaaiYcacaWGZbGaaGykaiaa i2dadaGabaqaauaabaqaciaaaeaadaWcaaqaaiab=bq8bjaadwgada ahaaWcbeqaamaapedabeqaaiaadohaaeaacaWG0baaniabgUIiYdWc cqWFpepucaaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaadohacaaIPa GaamizaiaadohaaaaakeaacqWFaeFqcqGHRaWkcqWFSeIqcaWGLbWa aWbaaSqabeaadaWdXaqabeaacaaIWaaabaGaaGymaaqdcqGHRiI8aS Gae83dXdLaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWGZbGaaGyk aiaadsgacaWGZbaaaaaakiaaiYcaaeaacaaIWaGaeyizImQaam4Cai abgsMiJkaadshacqGHKjYOcaaIXaGaaGilaaqaaiabgkHiTmaalaaa baGae8hlHiKaamyzamaaCaaaleqabaWaa8qmaeqabaGaam4Caaqaai aadshaa0Gaey4kIipaliab=9q8qjaaiIcacaWG4bGaaGilaiaadMha caaISaGaam4CaiaaiMcacaWGKbGaam4CaaaaaOqaaiab=bq8bjabgU caRiab=XsicjaadwgadaahaaWcbeqaamaapedabeqaaiaaicdaaeaa caaIXaaaniabgUIiYdWccqWFpepucaaIOaGaamiEaiaaiYcacaWG5b GaaGilaiaadohacaaIPaGaamizaiaadohaaaaaaOGaaGilaaqaaiaa icdacqGHKjYOcaWG0bGaaGipaiaadohacqGHKjYOcaaIXaGaaGilaa aaaiaawUhaaaaa@CDDD@

это, соответственно, фундаментальное решение однородного уравнения и функция Грина краевой задачи.

Заменим уравнение (3.1) приближенным уравнением

L t u(M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectdaWgaaWcbaGa amiDaaqabaGccaWG1bGaaGikaiaad2eacaaISaGaamiDaiaaiMcaaa a@48A4@

=f(t,M,u(ΛM,t), u x (ΛM,t), u y (ΛM,t), 2 u x 2 (ΛM,t), 2 u y 2 (ΛM,t), 2 u xy (ΛM,t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadA gacaaIOaGaamiDaiaaiYcacaWGnbGaaGilaiaadwhacaaIOaGaeu4M dWKaamytaiaaiYcacaWG0bGaaGykaiaaiYcadaWcaaqaaiabgkGi2k aadwhaaeaacqGHciITcaWG4baaaiaaiIcacqqHBoatcaWGnbGaaGil aiaadshacaaIPaGaaGilamaalaaabaGaeyOaIyRaamyDaaqaaiabgk Gi2kaadMhaaaGaaGikaiabfU5amjaad2eacaaISaGaamiDaiaaiMca caaISaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1b aabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGa eu4MdWKaamytaiaaiYcacaWG0bGaaGykaiaaiYcadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG5bWa aWbaaSqabeaacaaIYaaaaaaakiaaiIcacqqHBoatcaWGnbGaaGilai aadshacaaIPaGaaGilamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDaaqaaiabgkGi2kaadIhacqGHciITcaWG5baaaiaaiI cacqqHBoatcaWGnbGaaGilaiaadshacaaIPaGaaGykaiaaiYcaaaa@82F9@             (3.5)

u(N,t)=φ(N,t),N 2 \D,t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaywW7caaMf8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMf8UaaGzbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGzbVlaaywW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caWG1bGaaGikaiaad6eacaaISaGa amiDaiaaiMcacaaI9aGaeqOXdOMaaGikaiaad6eacaaISaGaamiDai aaiMcacaaISaGaaGjbVlaaysW7caWGobGaeyicI48efv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaai aaikdaaaGccaGGCbGaamiraiaaiYcacaaMe8UaaGjbVlaadshacaaI +aGaaGimaiaai6caaaa@98C7@

Здесь функция φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@  определена на ( 2 \D)× + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWba aSqabeaacaaIYaaaaOGaaiixaiaadseacaaIPaGaey41aqRae8xhHi 1aaSbaaSqaaiabgUcaRaqabaaaaa@4AFA@  так, что при любом t + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaSbaaSqaaiabgUcaRaqabaaaaa@464A@  она, как функция первого аргумента φ(,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiabgwSixlaaiYcacaWG0bGaaGykaiaaiYcaaaa@3FD8@  дважды дифференцируема и φ | (x,y) Γ 0 = φ 0 (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG iFamaaBaaaleaacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgIGi olabfo5ahnaaBaaabaGaaGimaaqabaaabeaakiaai2dacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@4967@  Решение приближенного уравнения (3.5) с краевыми условиями (3.2), (3.3) определяется при любом t[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3E7B@  последовательно на каждом множестве D n = D n1 \ D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=na8enaaBaaaleaa caWGUbaabeaakiaai2dacaWGebWaaSbaaSqaaiaad6gacqGHsislca aIXaaabeaakiaacYfacaWGebWaaSbaaSqaaiaad6gaaeqaaOGaaGil aaaa@4D96@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  следующими соотношениями. Положим u 0 (M,t)=φ(M,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWGnbGaaGilaiaadshacaaIPaGa aGypaiabeA8aQjaaiIcacaWGnbGaaGilaiaadshacaaIPaGaaGilaa aa@44F7@   M 2 \ D 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIYaaaaOGaaiixaiaadseadaWgaaWcbaGaaG imaaqabaGccaaISaaaaa@4957@   t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaGaaGilaaaa@3B38@  и обозначим через u n (M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGnbGaaGilaiaadshacaaIPaaa aa@3E10@  решение задачи (1.4), (1.2), (1.3) при M D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF daprdaWgaaWcbaGaamOBaaqabaGccaaISaaaaa@48B9@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@   t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaGaaGOlaaaa@3B3A@  Тогда решение при M D n+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF daprdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaGilaaaa@4A56@   t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  будет определяться формулой

u n+1 (M,t)=U(M,t)ϑ(M)+ 0 t G(M,t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccaaIOaGaamytaiaaiYca caWG0bGaaGykaiaai2dacaWGvbGaaGikaiaad2eacaaISaGaamiDai aaiMcacqaHrpGscaaIOaGaamytaiaaiMcacqGHRaWkcaaMb8+aa8qm aeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaGzaVlaadEeaca aIOaGaamytaiaaiYcacaWG0bGaaGilaiaadohacaaIPaaaaa@5750@

f(s,M, u n (ΛM,s), u n x (ΛM,s), u n y (ΛM,s), 2 u n x 2 (ΛM,s), 2 u n y 2 (ΛM,s), 2 u n xy (ΛM,s))ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICTaaG zaVlaadAgacaaIOaGaam4CaiaaiYcacaWGnbGaaGilaiaadwhadaWg aaWcbaGaamOBaaqabaGccaaIOaGaeu4MdWKaamytaiaaiYcacaaMb8 Uaam4CaiaaiMcacaaISaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaad6gacaaMb8oabeaaaOqaaiabgkGi2kaadIhaaaGaaGikaiabfU 5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGaaGilamaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaWGUbGaaGzaVdqabaaakeaacqGHci ITcaWG5baaaiaaiIcacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGa aGykaiaaiYcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadwhadaWgaaWcbaGaamOBaiaaygW7aeqaaaGcbaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGaeu4MdWKaamytaiaaiY cacaaMb8Uaam4CaiaaiMcacaaISaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaad6gacaaMb8oabeaaaO qaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiab fU5amjaad2eacaaISaGaaGzaVlaadohacaaIPaGaaGilamaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaWG UbGaaGzaVdqabaaakeaacqGHciITcaWG4bGaeyOaIyRaamyEaaaaca aIOaGaeu4MdWKaamytaiaaiYcacaaMb8Uaam4CaiaaiMcacaaIPaGa amizaiaadohacaaIUaaaaa@9FC6@

Соответственно, решение u(M,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWGnbGaaGilaiaadshacaaIPaaaaa@3CE7@  в граничных точках M Γ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI Giolabfo5ahnaaBaaaleaacaWGUbaabeaaaaa@3CE4@  областей D n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGUbaabeaakiaaiYcaaaa@3AAF@   n=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E7C@  определяется следующими рекуррентными соотношениями

u(M,t )| M Γ n+1 =U(M,t)ϑ(M)+ 0 t G(M,t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWGnbGaaGilaiaadshacaaIPaGaaGiFamaaBaaaleaacaWGnbGa eyicI4Saeu4KdC0aaSbaaeaacaWGUbGaey4kaSIaaGymaaqabaaabe aakiaai2dacaWGvbGaaGikaiaad2eacaaISaGaamiDaiaaiMcacqaH rpGscaaIOaGaamytaiaaiMcacqGHRaWkcaaMb8+aa8qmaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaaGzaVlaadEeacaaIOaGaamyt aiaaiYcacaWG0bGaaGilaiaadohacaaIPaaaaa@5C35@

f(s,M,u(ΛM,s), u x (ΛM,s), u y (ΛM,s), 2 u x 2 (ΛM,s), 2 u y 2 (ΛM,s), 2 u xy (ΛM,s ))| ΛM Γ n ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICTaaG zaVlaadAgacaaIOaGaam4CaiaaiYcacaWGnbGaaGilaiaadwhacaaI OaGaeu4MdWKaamytaiaaiYcacaaMb8Uaam4CaiaaiMcacaaISaWaaS aaaeaacqGHciITcaWG1bGaaGzaVdqaaiabgkGi2kaadIhacaaMb8oa aiaaiIcacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGaaGykaiaaiY cadaWcaaqaaiabgkGi2kaadwhacaaMb8oabaGaeyOaIyRaamyEaiaa ygW7aaGaaGikaiabfU5amjaad2eacaaISaGaaGzaVlaadohacaaIPa GaaGilamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD aiaaygW7aeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaG zaVdaacaaIOaGaeu4MdWKaamytaiaaiYcacaaMb8Uaam4CaiaaiMca caaISaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1b GaaGzaVdqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaGccaaM b8oaaiaaiIcacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGaaGykai aaiYcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwha caaMb8oabaGaeyOaIyRaamiEaiabgkGi2kaadMhacaaMb8oaaiaaiI cacqqHBoatcaWGnbGaaGilaiaaygW7caWGZbGaaGykaiaaiMcacaaI 8bWaaSbaaSqaaiabfU5amjaad2eacqGHiiIZcqqHtoWrdaWgaaqaai aad6gacaaMb8oabeaaaeqaaOGaamizaiaadohacaaIUaaaaa@A98F@

×

Об авторах

Татьяна Владимировна Жуковская

ФГБОУ ВО «Тамбовский государственный технический университет»

Email: t_zhukovskaia@mail.ru
ORCID iD: 0000-0003-4374-4336

кандидат физико-математических наук, доцент кафедры высшей математики

Россия, 392000, г. Тамбов, ул. Советская, 106/5

Евгений Семенович Жуковский

ФГБОУ ВО «Тамбовский государственный университет им. Г. Р. Державина»; ФГБУН «Институт проблем управления им. В. А. Трапезникова РАН»

Email: zukovskys@mail.ru
ORCID iD: 0000-0003-4460-7608

доктор физико-математических наук, профессор, директор научно-образовательного центра «Фундаментальные математические исследования», профессор кафедры функционального анализа, ведущий научный сотрудник

Россия, 392000, г. Тамбов, ул. Интернациональная, 33; 117997, г. Москва, ул. Профсоюзная, 65

Михаил Анатольевич Рыбаков

ФГБОУ ВО «Тамбовский государственный университет им. Г. Р. Державина»

Автор, ответственный за переписку.
Email: mixail08101987@mail.ru
ORCID iD: 0000-0001-8152-8357

старший преподаватель кафедры функционального анализа

Россия, 392000, г. Тамбов, ул. Интернациональная, 33

Анна Сергеевна Трофимова

ФГБОУ ВО «Тамбовский государственный университет им. Г. Р. Державина»; ФГБУН «Институт проблем управления им. В. А. Трапезникова РАН»

Email: anna.trofimova.24.01.99@mail.ru
ORCID iD: 0009-0001-2747-8675

аспирант, кафедра функционального анализа, научный сотрудник

Россия, 392000, г. Тамбов, ул. Интернациональная, 33; 117997, г. Москва, ул. Профсоюзная, 65

Список литературы

  1. В. С. Владимиров, Уравнения математической физики, Наука, М., 1981. [V. S. Vladimirov, Equations of Mathematical Physics, Nauka Publ., Moscow, 1981 (In Russian)].
  2. М. М. Лаврентьев, О некоторых некорректных задачах математической физики, Изд-во СО АН СССР, Новосибирск, 1962. [M. M. Lavrent’ev, On Some Ill-Posed Problems of Mathematical Physics, Academy of Sciences Publ., Novosibirsk, 1962 (In Russian)].
  3. Л. В. Канторович, В. И. Крылов, Методы приближенного решения уравнений в частных производных, ОНТИ НКТП СССР, Главная редакция общетехнической литературы, Ленинград–Москва, 1936. [L. V. Kantorovich, V. I. Krylov, Methods of Approximate Solution of Partial Differential Equations, ONTI NKTP USSR, Main editorial board of general technical literature, Leningrad–Moscow, 1936 (In Russian)].
  4. А. Н. Тихонов, В. Я. Арсенин, Методы решения некорректных задач, Наука, М., 1979. [A. N. Tikhonov, V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka Publ., Moscow, 1979 (In Russian)].
  5. M. Joachimiak, “Choice of the regularization parameter for the Cauchy problem for the Laplace equation”, International Journal of Numerical Methods for Heat & Fluid Flow, 30:10 (2020), 4475–4492.
  6. Е. Б. Ланеев, А. В. Климишин, “О приближенном решении некорректно поставленной смешанной краевой задачи для уравнения Лапласа в цилиндрической области с однородными условиями второго рода на боковой поверхности цилиндра”, Вестник российских университетов. Математика, 29:146 (2024), 164–175. [E. B. Laneev, A. V. Klimishin, “On an approximate solution to an ill-posed mixed boundary value problem for the Laplace equation in a cylindrical domain with homogeneous conditions of the second kind on the lateral surface of the cylinder”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:146 (2024), 164–175 (In Russian)].
  7. В. Вазов, Дж. Форсайт, Разностные методы решения дифференциальных уравнений в частных производных, Издательство иностранной литературы, М., 1963. [V. Vazov, J. Forsythe, Difference Methods for Solving Partial Differential Equations, Foreign Literature Publishing House, Moscow, 1963 (In Russian)].
  8. А. В. Родионов, “Некоторые теоретико-числовые методы решения дифференциальных уравнений в частных производных”, Чебышевский сб., 22:3 (2021), 256–297. [A. V. Rodionov, “Some number-theoretic methods for solving partial derivatives”, Chebyshevskii Sb., 22:3 (2021), 256–297 (In Russian)].
  9. Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов, Уравнения в частных производных математической физики, Высшая школа, М., 1970. [N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics, Vysshaya Shkola Publ., Moscow, 1970 (In Russian)].
  10. В. В. Провоторов, М. А. Рыбаков, “Решение начально-краевой задачи в символьном виде”, Вестник российских университетов. Математика, 28:142 (2023), 203–212. [V. V. Provotorov, M. A. Rybakov, “Solution of the initial boundary value problem in symbolic form”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:142 (2023), 203–212 (In Russian)].
  11. Т. В. Жуковская, Е. А. Молоканова, “Численные методы решения эволюционных функционально-дифференциальных уравнений”, Вестник Тамбовского университета. Серия: Естественные и технические науки, 17:5 (2012), 1352–1359. [T. V. Zhukovskaya, E. A. Molokanova, “Numerical methods for solution of evolutionary functional differential equations”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 17:5 (2012), 1352–1359 (In Russian)].

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».