Omniwheel implementation of the Suslov problem with a rheonomic constraint: dynamic model and control

Cover Page

Cite item

Full Text

Abstract

The classical Suslov problem of the motion of a rigid body with a fixed point is well known and has been studied in detail. In this paper, an omniwheel implementation of the Suslov problem is proposed. The controlled motion of a rigid body with a fixed point in the presence of scleronomic nonholonomic constraints and rheonomic artificial kinematic constraint is considered. The rigid body rotates around a fixed point, rolls around a spherical shell from the inside and contacts it by means of omniwheels with a differential actuator. We believe that the omniwheels are in contact with the spherical shell only at one point. In order to subordinate the motion of the rigid body to an artificial rheonomic constraint, a differential actuator creates control torques on omniwheels. Based on the d’Alembert–Lagrange principle, equations of motion of the mechanical system with indeterminate multipliers specifying constraint reactions are constructed. The problem is reduced to the study of a non-autonomous two-dimensional dynamical system. Using the generalized Poincaré transformation, the study of a two-dimensional dynamical system is reduced to the study of the stability of a one-parameter family of fixed points for a system of differential equations with a degenerate linear part. We determine numerical parameters for which phase trajectories of the system are bounded and for which phase trajectories of the system are unbounded. The results of the study are illustrated graphically. Based on numerical integration, maps for the period (Poincaré sections) and a map of dynamic regimes are constructed to confirm the Feigenbaum scenario of transition to chaotic dynamics.

Full Text

Введение

Данная работа посвящена исследованию динамики твердого тела с неподвижной точкой в задаче Суслова. Твердое тело движется в присутствии неоднородной реономной связи Суслова. Физическая интерпретация однородной склерономной неголономной связи Суслова [1, с. 593] была предложена Вагнером [2] (рис. 1). Твердое тело движется внутри сферической оболочки и контактирует с ней посредством «острых» колесиков (рис. 1), в результате чего возникает неголономная связь Суслова

(ω,e)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaGGadi ab=L8a3jaaiYcacaqILbGaaGykaiaai2dacaaIWaGaaGilaaaa@3F1E@

где ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xYdC haaa@39DC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  вектор угловой скорости тела, e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzaaaa@38F7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  вектор, неподвижный в теле.

 

Рис. 1. Физическая реализация Вагнера задачи Суслова

 

Динамика классической задачи Суслова, в том числе с переменными параметрами (обобщение задачи Суслова), хорошо изучена в работах [3-5]. В работе[3] авторы исследуют динамику системы Суслова с неоднородной склерономной неголономной связью

(ω,e)=const, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaGGadi ab=L8a3jaaiYcacaqILbGaaGykaiaai2dacaqGJbGaae4Baiaab6ga caqGZbGaaeiDaiaaiYcaaaa@431A@

однако, физическую интерпретацию этой связи авторы не указывают.

Обобщением склерономной связи Суслова является реономная связь Билимовича [6]. Билимович предложил физическую интерпретацию реономной неголономной связи

  (ω,a)=α, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaGGadi ab=L8a3jaaiYcacaqIHbGaaGykaiaai2dacqaHXoqycaaISaaaaa@3FFF@

где a=(1,p(t),0), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyyaiaai2 dacaaIOaGaaGymaiaaiYcacaWGWbGaaGikaiaadshacaaIPaGaaGil aiaaicdacaaIPaGaaGilaaaa@4209@   p(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaaiI cacaWG0bGaaGykaaaa@3B5A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  произвольная функция, α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  произвольная постоянная, в виде механизма с вращающимся стержнем [6]. Однако данная физическая интерпретация не совсем корректна. Найти физическую реализацию неоднородной склерономной связи Суслова также сложно. Динамика низкоразмерной неавтономной динамической системы в задаче Билимовича достаточно подробно была исследована в [7]. На основе численных экспериментов были выявлены случаи, когда одна из фазовых переменных или обе фазовые переменные неограничены. Для фазовых переменных в этих случаях были найдены асимптотики эмпирически.

В данной работе мы предложим омниколесную реализацию задачи Суслова. Для этого в механической системе Вагнера (рис. 1) заменим острые колесики на омниколеса с дифференциальным приводом. Управляя крутящим моментом на омниколесах, мы подчиним движение твердого тела реономной связи

(ω,e)=f(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaGGadi ab=L8a3jaaiYcacaqILbGaaGykaiaai2dacaWGMbGaaGikaiaadsha caaIPaGaaGOlaaaa@41AF@

Однако данную связь нельзя считать неголономной, так как неголономные связи реализуются естественным путем вследствие контакта. Данная связь искусственная. Такие связи часто называют условными связями (сервосвязями) [8-10]. Для ее реализации требуются управляющие воздействия. В данном случае управляющие воздействия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это управляющие крутящие моменты на омниколесах, зависящие от искомых механических параметов. Таким образом, получаем задачу с обратной связью.

В работе для заданных управляющих моментов на омниколесах строятся уравнения движения на основе принципа д’Аламбера MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Лагранжа, исследуется динамика системы, для чего строятся отображения Пуанкаре, которые могут содержать странные хаотические аттракторы. В случае появления хаотического аттрактора мы строим карту динамических режимов и показываем сценарий Фейгенбаума перехода к хаосу посредством каскада бифуркаций удвоения периода. В исследуемой динамической системе может наблюдаться неограниченный рост фазовых переменных. В работе приводится аналитическое доказательство этого факта с использованием преобразования Пуанкаре [11, с. 107], в результате которого мы переходим к исследованию устойчивости однопараметрического семейства неподвижных точек для системы с вырожденной линейной частью [12, 13]. Причем, в отличие от [12], у нас нет необходимости прибегать к нормальным формам. Определяются механические параметры системы, при которых наблюдается неограниченный рост фазовой переменной, и строятся асимтотики фазовых переменных, а также оцениваются управляющие крутящие моменты на омниколесах.

Другие качественные методы исследования динамического поведения нелинейной системы и методы управления представлены в [14, 15].

1. Математическая модель

Постановка задачи. Рассмотрим неподвижную сферическую оболочку радиуса R, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiY caaaa@3994@  внутри которой движется твердое тело массой M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@38D9@  с неподвижной точкой O, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaaiY caaaa@3991@  совпадающей с центром оболочки и центром масс самого тела (рис. 1). Твердое тело контактирует с оболочкой посредством двух одинаково ориентированных омниколес радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  и массой m, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaaiY caaaa@39AF@  расположенных диаметрально противоположно. Считаем, что каждое омниколесо контактирует с оболочкой только в одной точке.

Введем подвижную систему координат O x 1 x 2 x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaamiEamaaBaaaleaacaaIZaaabeaaaaa@3E9E@  с центром в точке O, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaaiY caaaa@3991@  жестко связанную с телом. Направим ось O x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaG4maaqabaaaaa@3AC1@  перпендикулярно плоскости омниколес. Тогда ось, соединяющая центры омниколес, лежит в плоскости O x 1 x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaaGOlaaaa@3D70@  Предполагаем, что геометрические и физические параметры системы и выбор осей системы координат таковы, что осевой момент инерции омниколеса равен j, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY caaaa@39AC@  а тензор инерции твердого тела вместе с омниколесами принимает вид

I= I 11 0 0 0 I 22 I 23 0 I 23 I 33 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaai2 dadaqadaqaauaabeqadmaaaeaacaWGjbWaaSbaaSqaaiaaigdacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadMeada WgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaamysamaaBaaaleaacaaI YaGaaG4maaqabaaakeaacaaIWaaabaGaamysamaaBaaaleaacaaIYa GaaG4maaqabaaakeaacaWGjbWaaSbaaSqaaiaaiodacaaIZaaabeaa aaaakiaawIcacaGLPaaacaaIUaaaaa@4B4A@

Неголономные условия непроскальзывания омниколес в точках контакта со сферической оболочкой принимают вид

( s i , n i ) χ ˙ i + R r ( s i ,ω)=0,i= 1,2 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaajo hadaWgaaWcbaGaamyAaaqabaGccaaISaGaaKOBamaaBaaaleaacaWG PbaabeaakiaaiMcacqGHflY1cuaHhpWygaGaamaaBaaaleaacaWGPb aabeaakiabgUcaRmaalaaabaGaamOuaaqaaiaadkhaaaGaaGikaiaa johadaWgaaWcbaGaamyAaaqabaGccaaISaaccmGae8xYdCNaaGykai aai2dacaaIWaGaaGilaiaaywW7caWGPbGaaGypamaanaaabaGaaGym aiaaiYcacaaIYaaaaiaaiYcaaaa@54CF@  (1.1)

где χ ˙ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4XdmMbai aadaWgaaWcbaGaamyAaaqabaaaaa@3AE1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  угловая скорость i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@38F5@  -го омниколеса, ω=( ω 1 , ω 2 , ω 3 ) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xYdC NaaGypaiaaiIcacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaaISaGa eqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeM8a3naaBaaale aacaaIZaaabeaakiaaiMcadaahaaWcbeqaaiaadsfaaaaaaa@46B7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  вектор угловой скорости тела, s i = r i × a i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4CamaaBa aaleaacaWGPbaabeaakiaai2dacaqIYbWaaSbaaSqaaiaadMgaaeqa aOGaey41aqRaaKyyamaaBaaaleaacaWGPbaabeaakiaaiYcaaaa@41EE@  вектор n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOBamaaBa aaleaacaWGPbaabeaaaaa@3A1A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  единичный вектор, нормальный к плоскости омниколеса, вектор a i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyyamaaBa aaleaacaWGPbaabeaaaaa@3A0D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  единичный вектор, направленный вдоль оси ролика, контактирующего с оболочкой, r i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOCamaaBa aaleaacaWGPbaabeaaaaa@3A1E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  радиус-вектор, направленный от центра сферы до центра i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@38F5@  -го омниколеса. Более подробно с неголономной моделью омниколеса можно ознакомиться в [16] (конструкцию омниколеса см. рис. 2).

 

Рис. 2. Конструкция омниколеса

 

Векторы a i , n i , r i , s i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyyamaaBa aaleaacaWGPbaabeaakiaaiYcacaqIUbWaaSbaaSqaaiaadMgaaeqa aOGaaGilaiaajkhadaWgaaWcbaGaamyAaaqabaGccaaISaGaaK4Cam aaBaaaleaacaWGPbaabeaaaaa@428F@  в системе координат O x 1 x 2 x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaamiEamaaBaaaleaacaaIZaaabeaaaaa@3E9E@  имеют следующие координаты

r 1 = (Rr)cosφ (Rr)sinφ 0 , a 1 = sinφsinξ cosφsinξ cosξ , n 1 = 0 0 1 , s 1 = (Rr)sinφcosξ (Rr)cosφcosξ (Rr)sinξ , r 2 = (Rr)cosφ (Rr)sinϕ 0 , a 2 = sinφsinξ cosφsinξ cosξ , n 2 = 0 0 1 , s 2 = (Rr)sinφcosξ (Rr)cosφcosξ (Rr)sinξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaajkhadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaeWaaeaafaqa beWabaaabaGaaGikaiaadkfacqGHsislcaWGYbGaaGykaiGacogaca GGVbGaai4CaiabeA8aQbqaaiaaiIcacaWGsbGaeyOeI0IaamOCaiaa iMcaciGGZbGaaiyAaiaac6gacqaHgpGAaeaacaaIWaaaaaGaayjkai aawMcaaiaaygW7caaISaGaaGjcVlaajggadaWgaaWcbaGaaGymaaqa baGccaaI9aWaaeWaaeaafaqabeWabaaabaGaeyOeI0Iaci4CaiaacM gacaGGUbGaeqOXdOMaci4CaiaacMgacaGGUbGaeqOVdGhabaGaci4y aiaac+gacaGGZbGaeqOXdOMaci4CaiaacMgacaGGUbGaeqOVdGhaba Gaci4yaiaac+gacaGGZbGaeqOVdGhaaaGaayjkaiaawMcaaiaaygW7 caaISaGaaGjcVlaaj6gadaWgaaWcbaGaaGymaaqabaGccaaI9aWaae WaaeaafaqabeWabaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGa ayjkaiaawMcaaiaaygW7caaISaGaaGjcVlaajohadaWgaaWcbaGaaG ymaaqabaGccaaI9aWaaeWaaeaafaqabeWabaaabaGaaGikaiaadkfa cqGHsislcaWGYbGaaGykaiGacohacaGGPbGaaiOBaiabeA8aQjGaco gacaGGVbGaai4Caiabe67a4bqaaiabgkHiTiaaiIcacaWGsbGaeyOe I0IaamOCaiaaiMcaciGGJbGaai4BaiaacohacqaHgpGAciGGJbGaai 4BaiaacohacqaH+oaEaeaacaaIOaGaamOuaiabgkHiTiaadkhacaaI PaGaci4CaiaacMgacaGGUbGaeqOVdGhaaaGaayjkaiaawMcaaiaayg W7caaISaaabaGaaGzbVlaajkhadaWgaaWcbaGaaGOmaaqabaGccaaI 9aWaaeWaaeaafaqabeWabaaabaGaeyOeI0IaaGikaiaadkfacqGHsi slcaWGYbGaaGykaiGacogacaGGVbGaai4CaiabeA8aQbqaaiabgkHi TiaaiIcacaWGsbGaeyOeI0IaamOCaiaaiMcaciGGZbGaaiyAaiaac6 gacqaHvpGzaeaacaaIWaaaaaGaayjkaiaawMcaaiaaygW7caaISaGa aGjcVlaajggadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaeWaaeaafa qabeWabaaabaGaci4CaiaacMgacaGGUbGaeqOXdOMaci4CaiaacMga caGGUbGaeqOVdGhabaGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqOXdO Maci4CaiaacMgacaGGUbGaeqOVdGhabaGaci4yaiaac+gacaGGZbGa eqOVdGhaaaGaayjkaiaawMcaaiaaygW7caaISaGaaGjcVlaaj6gada WgaaWcbaGaaGOmaaqabaGccaaI9aWaaeWaaeaafaqabeWabaaabaGa aGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaaygW7ca aISaGaaGjcVlaajohadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaeWa aeaafaqabeWabaaabaGaeyOeI0IaaGikaiaadkfacqGHsislcaWGYb GaaGykaiGacohacaGGPbGaaiOBaiabeA8aQjGacogacaGGVbGaai4C aiabe67a4bqaaiaaiIcacaWGsbGaeyOeI0IaamOCaiaaiMcaciGGJb Gaai4BaiaacohacqaHgpGAciGGJbGaai4BaiaacohacqaH+oaEaeaa caaIOaGaamOuaiabgkHiTiaadkhacaaIPaGaci4CaiaacMgacaGGUb GaeqOVdGhaaaGaayjkaiaawMcaaiaaygW7caaISaaaaaaa@19FB@

где угол ξ0,π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey iyIKRaaGimaiaaiYcacqaHapaCaaa@3EBE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  угол между осью ролика и нормалью к плоскости омниколеса, угол φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  угол, между осью, соединяющей центры омниколес и положительным направлением оси O x 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaGymaaqabaGccaaIUaaaaa@3B81@

Замечание 1.1 В случаях ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiaaicdaaaa@3B4B@  и ξ=π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiabec8aWbaa@3C4E@  неголономные условия приобретают вид классических неголономных условий Суслова для твердого тела на «острых» колесиках.

Потребуем, чтобы движение твердого тела подчинялось искусственной связи

(ω,e)=f(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaGGadi ab=L8a3jaaiYcacaqILbGaaGykaiaai2dacaWGMbGaaGikaiaadsha caaIPaGaaGilaaaa@41AD@  (1.2)

где e =(0,0,1) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzaiaai2 dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiaaigdacaaIPaWaaWba aSqabeaacaWGubaaaaaa@3FC4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  координатный вектор оси O x 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaG4maaqabaGccaaISaaaaa@3B81@   f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaaaa@3B50@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданная периодическая функция времени t. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 caaaa@39B8@  Для реализации условия (1.2) на каждое i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@38F5@  -e омниколесо установим дифференциальный привод, который будет генерировать управляющий крутящий момент K i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaai6caaaa@3AB3@

Требуется оценить возможность физической реализации такого движения и исследовать динамику системы.

Уравнения движения. Лагранжиан системы имеет вид

L= 1 2 (ω,Iω)+ 1 2 j χ ˙ 1 2 + χ ˙ 2 2 +j (ω, n 1 ) χ ˙ 1 +(ω, n 2 ) χ ˙ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2 dadaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIcaiiWacqWFjpWDcaaI SaGaamysaiab=L8a3jaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaaiaadQgadaqadaqaaiqbeE8aJzaacaWaa0baaSqaaiaaigda aeaacaaIYaaaaOGaey4kaSIafq4XdmMbaiaadaqhaaWcbaGaaGOmaa qaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWGQbWaaeWaaeaa caaIOaGae8xYdCNaaGilaiaaj6gadaWgaaWcbaGaaGymaaqabaGcca aIPaGafq4XdmMbaiaadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaI OaGae8xYdCNaaGilaiaaj6gadaWgaaWcbaGaaGOmaaqabaGccaaIPa Gafq4XdmMbaiaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa caaIUaaaaa@643E@

Уравнения движения с неопределенными множителями для твердого тела строятся аналогично уравнениям движения в [17]:

ddtLωLω×ω+Lγ×γ+Rrμ1s1s1,n1+μ2s2s2,n2,ddtLχ˙1Lχ1+μ1+K1,ddtLχ˙2Lχ2+μ2+K2,γ˙γ×ω,  (1.3)

где γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae83SdC gaaa@39B6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  единичный вектор абсолютного пространства, направленный вдоль силы тяжести, μ 1 , μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeY7aTnaaBaaaleaacaaIYaaa beaaaaa@3E02@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  неопределенные множители, задающие реакцию неголономных связей, K 1 , K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiaaiYcacaWGlbWaaSbaaSqaaiaaikdaaeqa aaaa@3C36@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  моменты сил, приложенных к осям омниколес. Так как центр масс твердого тела совпадает с центром системы координат O x 1 x 2 x 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI hadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaamiEamaaBaaaleaacaaIZaaabeaakiaaiYcaaaa@3F5E@  то, отбросив последнее векторное уравнение (1.3), можно перейти к исследованию системы

J ω ˙ =Jω×ω+Q j χ ¨ 1 +j ω ˙ 3 = μ 1 + K 1 , j χ ¨ 2 +j ω ˙ 3 = μ 2 + K 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmabaa aabaGaamOsaGGadiqb=L8a3zaacaGaaGypaiaadQeacqWFjpWDcqGH xdaTcqWFjpWDcqGHRaWkcaqIrbaabaaabaaabaaabaGaamOAaiqbeE 8aJzaadaWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOAaiqbeM8a 3zaacaWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiabeY7aTnaaBaaale aacaaIXaaabeaakiabgUcaRiaadUeadaWgaaWcbaGaaGymaaqabaGc caaISaaabaaabaaabaaabaGaamOAaiqbeE8aJzaadaWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamOAaiqbeM8a3zaacaWaaSbaaSqaaiaa iodaaeqaaOGaaGypaiabeY7aTnaaBaaaleaacaaIYaaabeaakiabgU caRiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaISaaabaaabaaabaaa aaaa@61D1@  (1.4)

 где J= I 11 0 0 0 I 22 I 23 0 I 23 I 33 2jR r , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai2 dadaqadaqaauaabeqadmaaaeaacaWGjbWaaSbaaSqaaiaaigdacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadMeada WgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaamysamaaBaaaleaacaaI YaGaaG4maaqabaaakeaacaaIWaaabaGaamysamaaBaaaleaacaaIYa GaaG4maaqabaaakeaacaWGjbWaaSbaaSqaaiaaiodacaaIZaaabeaa kiabgkHiTmaalaaabaGaaGOmaiaadQgacaWGsbaabaGaamOCaaaaaa aacaGLOaGaayzkaaGaaGzaVlaaiYcaaaa@5149@   Q= R r sinφctgξ μ 1 μ 2 cosφctgξ μ 1 μ 2 μ 1 + μ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyuaiaai2 dadaWcaaqaaiaadkfaaeaacaWGYbaaamaabmaabaqbaeqabmqaaaqa aiGacohacaGGPbGaaiOBaiabeA8aQjGacogacaGG0bGaai4zaiabe6 7a4naabmaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia eqiVd02aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaey OeI0Iaci4yaiaac+gacaGGZbGaeqOXdOMaci4yaiaacshacaGGNbGa eqOVdG3aaeWaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGHsi slcqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaa cqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH8oqBdaWgaa WcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@66C3@

Неопределенные множители определяем из совместного решения уравнений движения и производных по времени от уравнений (1.1), а моменты сил, приложенные к осям, находим из уравнения, являющегося производной по времени от искусственной связи (1.22). Неопределенные множители μ 1 , μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeY7aTnaaBaaaleaacaaIYaaa beaaaaa@3E02@  как функции от K 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaaaaa@39BE@  и K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaaaaa@39BF@  определяются единственным образом, а вот моменты K 1 , K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiaaiYcacaWGlbWaaSbaaSqaaiaaikdaaeqa aaaa@3C36@  определяются уже не единственным образом, так как одного уравнения (1.2) недостаточно. Таким образом, накладывая дополнительное условие на моменты или на систему, можно получить систему с самой разнообразной динамикой.

Потребуем, чтобы Q 1 = Q 2 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIXaaabeaakiaai2dacaWGrbWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaaicdacaaISaaaaa@3E94@  то есть μ 1 = μ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGypaiabeY7aTnaaBaaaleaacaaIYaaa beaakiaai6caaaa@3ED5@  Тогда управляющие крутящие моменты на омниколесах примут вид:

K 1,2 = jRctgξcosφ r I 22 I 11 I 33 f(t) ω 1 + I 23 f ˙ (t) ω 1 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaGaaGilaiaaikdaaeqaaOGaaGypaiabloHiTnaalaaa baGaamOAaiaadkfaciGGJbGaaiiDaiaacEgacqaH+oaEciGGJbGaai 4BaiaacohacqaHgpGAaeaacaWGYbGaamysamaaBaaaleaacaaIYaGa aGOmaaqabaaaaOWaamWaaeaadaqadaqaaiaadMeadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaeyOeI0IaamysamaaBaaaleaacaaIZaGaaG4m aaqabaaakiaawIcacaGLPaaacaWGMbGaaGikaiaadshacaaIPaGaeq yYdC3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamysamaaBaaaleaa caaIYaGaaG4maaqabaGcdaqadaqaaiqadAgagaGaaiaaiIcacaWG0b GaaGykaiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaakiabeM8a 3naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaaa@69A7@

jRctgξsinφ r I 11 I 22 I 33 f(t) ω 2 + I 23 f (t) 2 ω 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eI02aaS aaaeaacaWGQbGaamOuaiGacogacaGG0bGaai4zaiabe67a4jGacoha caGGPbGaaiOBaiabeA8aQbqaaiaadkhacaWGjbWaaSbaaSqaaiaaig dacaaIXaaabeaaaaGcdaWadaqaamaabmaabaGaamysamaaBaaaleaa caaIYaGaaGOmaaqabaGccqGHsislcaWGjbWaaSbaaSqaaiaaiodaca aIZaaabeaaaOGaayjkaiaawMcaaiaadAgacaaIOaGaamiDaiaaiMca cqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGjbWaaSbaaS qaaiaaikdacaaIZaaabeaakmaabmaabaGaamOzaiaaiIcacaWG0bGa aGykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabeM8a3naaDaaale aacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa aaaa@649C@

r 2R I 22 ( I 22 I 11 ) ω 1 I 22 ω 2 + I 23 f(t) + I 23 ω 1 I 23 ω 2 + I 33 f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaWGYbaabaGaaGOmaiaadkfacaWGjbWaaSbaaSqaaiaaikda caaIYaaabeaaaaGcdaWadaqaaiaaiIcacaWGjbWaaSbaaSqaaiaaik dacaaIYaaabeaakiabgkHiTiaadMeadaWgaaWcbaGaaGymaiaaigda aeqaaOGaaGykaiabeM8a3naaBaaaleaacaaIXaaabeaakmaabmaaba GaamysamaaBaaaleaacaaIYaGaaGOmaaqabaGccqaHjpWDdaWgaaWc baGaaGOmaaqabaGccqGHRaWkcaWGjbWaaSbaaSqaaiaaikdacaaIZa aabeaakiaadAgacaaIOaGaamiDaiaaiMcaaiaawIcacaGLPaaacqGH RaWkcaWGjbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabeM8a3naaBa aaleaacaaIXaaabeaakmaabmaabaGaamysamaaBaaaleaacaaIYaGa aG4maaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca WGjbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaadAgacaaIOaGaamiD aiaaiMcaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@6AF9@

1 2 I 22 2 I 22 j R r 1 + r I 22 I 33 I 23 2 R f ˙ (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaiaadMeadaWgaaWcbaGaaGOmaiaaikda aeqaaaaakmaadmaabaGaaGOmaiaadMeadaWgaaWcbaGaaGOmaiaaik daaeqaaOGaamOAamaabmaabaWaaSaaaeaacaWGsbaabaGaamOCaaaa cqGHsislcaaIXaaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGYb WaaeWaaeaacaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaadMea daWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyOeI0IaamysamaaDaaale aacaaIYaGaaG4maaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaWG sbaaaaGaay5waiaaw2faaiqadAgagaGaaiaaiIcacaWG0bGaaGykai aai6caaaa@5993@

Тогда система (1.4) и задача в целом сводится к исследованию системы для двух компонент угловой скорости ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaaaa@3ABB@  и ω 2 : MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaikdaaeqaaOGaaGOoaaaa@3B8A@  

ω˙1I23I11ω22+I22I~33I11ftω2+I23I11ft2,ω˙2I23I22ω1ω2I11I~33I22ftω1I23I22f˙t  (1.5)

где I ˜ 33 = I 33 2j R r . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaia WaaSbaaSqaaiaaiodacaaIZaaabeaakiaai2dacaWGjbWaaSbaaSqa aiaaiodacaaIZaaabeaakiabgkHiTiaaikdacaWGQbWaaSaaaeaaca WGsbaabaGaamOCaaaacaaIUaaaaa@4307@

В случае φ= πk 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ypamaalaaabaGaeqiWdaNaam4AaaqaaiaaikdaaaGaaGilaaaa@3EBA@   k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hj HOfaaa@4542@  или ξ= π 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaeqiWdahabaGaaGOmaaaaaaa@3D1A@  аналогичная система получится, если в качестве дополнительного условия выбрать равенство управляющих крутящих моментов на колесах, то есть K 1 = K 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiaai2dacaWGlbWaaSbaaSqaaiaaikdaaeqa aOGaaGOlaaaa@3D09@

Управляющие крутящие моменты зависят от значений угловых скоростей ω 1 , ω 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeM8a3naaBaaaleaacaaIYaaa beaakiaai6caaaa@3EF2@  При неограниченном поведении хотя бы одной из компонент управляющие крутящие моменты также будут неограничены, что сделает невозможной физическую реализацию задачи, начиная с некоторого момента времени.

При I 23 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccaaI9aGaaGimaaaa@3C05@  для фазовых переменных системы имеет место первый интеграл

I 11 I ˜ 33 I 22 ω 1 2 + I 22 I ˜ 33 I 11 ω 2 2 =const, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGjbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiqadMeagaac amaaBaaaleaacaaIZaGaaG4maaqabaaakeaacaWGjbWaaSbaaSqaai aaikdacaaIYaaabeaaaaGccqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGccqGHRaWkdaWcaaqaaiaadMeadaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyOeI0IabmysayaaiaWaaSbaaSqaaiaaiodacaaIZaaa beaaaOqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaaaakiabeM 8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiaai2dacaqGJbGaae4B aiaab6gacaqGZbGaaeiDaiaaiYcaaaa@5713@

и решение может быть найдено явным интегрированием. При

( I 11 I ˜ 33 )( I 22 I ˜ 33 )>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0IabmysayaaiaWa aSbaaSqaaiaaiodacaaIZaaabeaakiaaiMcacaaIOaGaamysamaaBa aaleaacaaIYaGaaGOmaaqabaGccqGHsislceWGjbGbaGaadaWgaaWc baGaaG4maiaaiodaaeqaaOGaaGykaiaai6dacaaIWaaaaa@483D@

обе фазовые переменные являются ограниченными функциями. Физическая реализация возможна. В противном случае динамика системы зависит от вида функции f(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai6caaaa@3C08@

Перейдем к исследованию поведения системы в случае I 23 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccqGHGjsUcaaIWaGaaGOlaaaa@3DBD@

2. Исследование динамики системы при I 23 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccqGHGjsUcaaIWaaaaa@3D05@

Введем замену

ω 1 = I 22 I 23 v, ω 2 = I 11 I ˜ 33 I 23 f(t)+ I 11 I 22 I 23 u. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiabaa aabaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTmaa laaabaGaamysamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWGjb WaaSbaaSqaaiaaikdacaaIZaaabeaaaaGccaWG2bGaaGilaaqaaaqa aaqaaaqaaiabeM8a3naaBaaaleaacaaIYaaabeaakiaai2dadaWcaa qaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iabmys ayaaiaWaaSbaaSqaaiaaiodacaaIZaaabeaaaOqaaiaadMeadaWgaa WcbaGaaGOmaiaaiodaaeqaaaaakiaadAgacaaIOaGaamiDaiaaiMca cqGHRaWkdaWcaaqaamaakaaabaGaamysamaaBaaaleaacaaIXaGaaG ymaaqabaGccaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaaaeqaaaGc baGaamysamaaBaaaleaacaaIYaGaaG4maaqabaaaaOGaamyDaiaai6 caaeaaaeaaaeaaaaaaaa@5CC0@

В новых переменных система (1.5) принимает вид

v˙u2+aftu+bft2,u˙uvcf˙t (2.1)

где

a= I 11 I 22 + I 11 I ˜ 33 I 11 I 22 ,b= I 11 I 22 I 11 I ˜ 33 I 23 2 I 11 I 22 ,c= I 22 I 11 I ˜ 33 + I 23 2 I 22 I 11 I 22 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dadaWcaaqaamaabmaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqa baGccqGHsislcaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaay jkaiaawMcaaiabgUcaRmaabmaabaGaamysamaaBaaaleaacaaIXaGa aGymaaqabaGccqGHsislceWGjbGbaGaadaWgaaWcbaGaaG4maiaaio daaeqaaaGccaGLOaGaayzkaaaabaWaaOaaaeaacaWGjbWaaSbaaSqa aiaaigdacaaIXaaabeaakiaadMeadaWgaaWcbaGaaGOmaiaaikdaae qaaaqabaaaaOGaaGilaiaayIW7caaMe8UaamOyaiaai2dadaWcaaqa amaabmaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsi slcaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMca amaabmaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsi slceWGjbGbaGaadaWgaaWcbaGaaG4maiaaiodaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IaamysamaaDaaaleaacaaIYaGaaG4maaqaaiaaik daaaaakeaacaWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadMea daWgaaWcbaGaaGOmaiaaikdaaeqaaaaakiaaiYcacaaMi8UaaGjbVl aadogacaaI9aWaaSaaaeaacaWGjbWaaSbaaSqaaiaaikdacaaIYaaa beaakmaabmaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccq GHsislceWGjbGbaGaadaWgaaWcbaGaaG4maiaaiodaaeqaaaGccaGL OaGaayzkaaGaey4kaSIaamysamaaDaaaleaacaaIYaGaaG4maaqaai aaikdaaaaakeaacaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaakmaa kaaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGjbWaaS baaSqaaiaaikdacaaIYaaabeaaaeqaaaaakiaai6caaaa@880F@

Фазовое пространство системы (2.1) двумерно.

Преобразование Пуанкаре и неограниченность фазовых траекторий. Введем угловую переменную τ=tmodT, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ypaiaadshaciGGTbGaai4BaiaacsgacaWGubGaaGilaaaa@3FE9@  где T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@38E0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  наименьший общий период функций f(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@3C06@   f (t) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@3CF9@   f ˙ (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaca GaaGikaiaadshacaaIPaGaaGilaaaa@3C0F@   τ[0,T), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaG4waiaaicdacaaISaGaamivaiaaiMcacaaISaaaaa@3FE7@  и перепишем систему (2.1) в автономном виде

dvdtu2+afτu+bfτ2,dudtuvcdfτdτ,dτdt (2.2)

Считаем, что v>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai6 dacaaIWaGaaGOlaaaa@3B3C@  Используем преобразование Пуанкаре, которое переводит бесконечно удаленные точки фазовой плоскости в неподвижные точки сферы Пуанкаре [11],

v= 1 x ,u= y x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dadaWcaaqaaiaaigdaaeaacaWG4baaaiaaiYcacaaMf8UaamyDaiaa i2dadaWcaaqaaiaadMhaaeaacaWG4baaaiaaiYcaaaa@4257@

масштабируем время ds=vdt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaado hacaaI9aGaamODaiaadsgacaWG0baaaa@3D8C@  и переписываем систему (2.2) в переменных x,y: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiY cacaWG5bGaaGOoaaaa@3B7C@  

dxdsxy2afτx2ybfτ2x3,dydsycdfτdτx2y3afτxy2bfτ2x2y,dτdsx.  (2.3)

Фазовое пространство системы (2.3) уже трехмерно. Эта система обладает семейством неподвижных точек

x=0,y=0,τ= τ * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaGaaGilaiaaysW7caaMi8UaamyEaiaai2dacaaIWaGaaGil aiaaysW7caaMi8UaeqiXdqNaaGypaiabes8a0naaCaaaleqabaGaaG OkaaaakiaaiYcaaaa@4A9E@  (2.4)

где τ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaW baaSqabeaacaaIQaaaaaaa@3AAD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  любое из области определения. Для анализа их устойчивости определяем собственные числа матрицы системы, линеаризованной в окрестности (2.4). Одно из собственных чисел матрицы линеаризованной системы равно 1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ymaiaaiYcaaaa@3A65@  а другие собственные числа равны нулю. Таким образом, требуется учет членов разложения более высоких порядков.

Согласно [14, 18] в окрестности неподвижной точки (2.4) существует центральное инвариантное многообразие, на котором 0<x<ε, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWG4bGaaGipaiabew7aLjaaiYcaaaa@3DA7@   τmodT, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaci yBaiaac+gacaGGKbGaamivaiaaiYcaaaa@3E29@  а функция y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3905@  представима в виде ряда по степеням x: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiQ daaaa@39C8@  

y= β 2 (τ) x 2 + β 3 (τ) x 3 +O( x 4 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeqiXdqNaaGyk aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHYoGydaWgaa WcbaGaaG4maaqabaGccaaIOaGaeqiXdqNaaGykaiaadIhadaahaaWc beqaaiaaiodaaaGccqGHRaWkcaWGpbGaaGikaiaadIhadaahaaWcbe qaaiaaisdaaaGccaaIPaGaaGOlaaaa@4FCF@  (2.5)

Подставляя (2.5) во второе уравнение (2.3), получим

y=c df(τ) dτ x 2 +c d 2 f(τ) d τ 2 x 3 +O( x 4 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacqGHsislcaWGJbWaaSaaaeaacaWGKbGaamOzaiaaiIcacqaHepaD caaIPaaabaGaamizaiabes8a0baacaWG4bWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaam4yamaalaaabaGaamizamaaCaaaleqabaGaaGOm aaaakiaadAgacaaIOaGaeqiXdqNaaGykaaqaaiaadsgacqaHepaDda ahaaWcbeqaaiaaikdaaaaaaOGaamiEamaaCaaaleqabaGaaG4maaaa kiabgUcaRiaad+eacaaIOaGaamiEamaaCaaaleqabaGaaGinaaaaki aaiMcacaaISaaaaa@586D@  (2.6)

Подставляя (2.6) в первое уравнение (2.3), получим                                                                       

dxdsα3τx3+α4τx4+α5τx5+Ox6α3τbfτ2,α4τacfτdfτdτ,α5τc2dfτdτ2acfτd2fτdτ2.  (2.7)

Пусть x1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaebbfv 3ySLgzGueE0jxyaGqbaiab=PMi9iaaigdacaaIUaaaaa@4061@  Разделим уравнение (2.7) на третье уравнение (2.3):

dx dτ = α 3 (τ) x 2 + α 4 (τ) x 3 + α 5 (τ) x 4 +O( x 5 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamiEaaqaaiaadsgacqaHepaDaaGaaGypaiabeg7aHnaaBaaa leaacaaIZaaabeaakiaaiIcacqaHepaDcaaIPaGaamiEamaaCaaale qabaGaaGOmaaaakiabgUcaRiabeg7aHnaaBaaaleaacaaI0aaabeaa kiaaiIcacqaHepaDcaaIPaGaamiEamaaCaaaleqabaGaaG4maaaaki abgUcaRiabeg7aHnaaBaaaleaacaaI1aaabeaakiaaiIcacqaHepaD caaIPaGaamiEamaaCaaaleqabaGaaGinaaaakiabgUcaRiaad+eaca aIOaGaamiEamaaCaaaleqabaGaaGynaaaakiaaiMcaaaa@5B4E@

и выполним преобразование для усреднения коэффициентов:

dx dt = α 3 x 2 + α 4 x 3 + α 5 x 4 +O( x 5 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamiEaaqaaiaadsgacaWG0baaaiaai2dacqGHPms4cqaHXoqy daWgaaWcbaGaaG4maaqabaGccqGHQms8caWG4bWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaeyykJeUaeqySde2aaSbaaSqaaiaaisdaaeqa aOGaeyOkJeVaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiabgM YiHlabeg7aHnaaBaaaleaacaaI1aaabeaakiabgQYiXlaadIhadaah aaWcbeqaaiaaisdaaaGccqGHRaWkcaWGpbGaaGikaiaadIhadaahaa WcbeqaaiaaiwdaaaGccaaIPaGaaGilaaaa@5C43@

где

α i = 1 T 0 T α i (τ)dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaeq ySde2aaSbaaSqaaiaadMgaaeqaaOGaeyOkJeVaaGypamaalaaabaGa aGymaaqaaiaadsfaaaWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcq GHRiI8aOGaeqySde2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabes8a 0jaaiMcacaWGKbGaeqiXdqNaaGOlaaaa@4DD2@

Согласно [18], если b>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaGaaGilaaaa@3B26@  то α 3 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaeq ySde2aaSbaaSqaaiaaiodaaeqaaOGaeyOkJeVaaGipaiaaicdaaaa@3F9C@  и точки (2.4) асимптотически устойчивы. Если b<0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacaaIWaGaaGilaaaa@3B24@  то α 3 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaeq ySde2aaSbaaSqaaiaaiodaaeqaaOGaeyOkJeVaaGOpaiaaicdaaaa@3F9E@  и точки (2.4) неустойчивы.

Пусть b=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIWaGaaGOlaaaa@3B27@  Так как I 23 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccqGHGjsUcaaIWaGaaGilaaaa@3DBB@  то c0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgc Mi5kaaicdacaaIUaaaaa@3C28@  Тогда

α 3 =0, α 4 = 1 T ac 0 T f(τ)df(τ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeabaa aabaGaeyykJeUaeqySde2aaSbaaSqaaiaaiodaaeqaaOGaeyOkJeVa aGypaiaaicdacaaISaGaaGzbVlabgMYiHlabeg7aHnaaBaaaleaaca aI0aaabeaakiabgQYiXlaai2dadaWcaaqaaiaaigdaaeaacaWGubaa aiabgwSixlaadggacqGHflY1caWGJbWaa8qmaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaamOzaiaaiIcacqaHepaDcaaIPaGaamiz aiaadAgacaaIOaGaeqiXdqNaaGykaiaai2dacaaIWaGaaGOlaaqaaa qaaaqaaaaaaaa@5FE8@

Перепишем α 5 (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaiwdaaeqaaOGaaGikaiabes8a0jaaiMcaaaa@3DC5@  в виде

α 5 (τ)= c 2 ac df(τ) dτ 2 ac d dτ f(τ) df(τ) dτ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaiwdaaeqaaOGaaGikaiabes8a0jaaiMcacaaI9aGaeyOe I0YaaeWaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaam yyaiabgwSixlaadogaaiaawIcacaGLPaaadaqadaqaamaalaaabaGa amizaiaadAgacaaIOaGaeqiXdqNaaGykaaqaaiaadsgacqaHepaDaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaamyy aiabgwSixlaadogacqGHflY1daWcaaqaaiaadsgaaeaacaWGKbGaeq iXdqhaamaabmaabaGaamOzaiaaiIcacqaHepaDcaaIPaWaaSaaaeaa caWGKbGaamOzaiaaiIcacqaHepaDcaaIPaaabaGaamizaiabes8a0b aaaiaawIcacaGLPaaacaaIUaaaaa@6B22@

Так как f(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacqaHepaDcaaIPaaaaa@3C1C@  и df(τ) dτ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamOzaiaaiIcacqaHepaDcaaIPaaabaGaamizaiabes8a0baa aaa@3FC3@  являются T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@38E0@  -периодическими функциями, то

0 T d f(τ) df(τ) dτ =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamizamaabmaabaGaamOz aiaaiIcacqaHepaDcaaIPaWaaSaaaeaacaWGKbGaamOzaiaaiIcacq aHepaDcaaIPaaabaGaamizaiabes8a0baaaiaawIcacaGLPaaacaaI 9aGaaGimaiaai6caaaa@4C4A@

Легко проверить, что если b=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIWaGaaGilaaaa@3B25@  то c 2 ac<0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadggacqGHflY1caWGJbGaaGip aiaaicdacaaIUaaaaa@411F@  Если f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaaaa@3B50@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  не постоянная функция, то α 5 >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaeq ySde2aaSbaaSqaaiaaiwdaaeqaaOGaeyOkJeVaaGOpaiaaicdacaaI Uaaaaa@4058@  Это значит, что, согласно [18], точки (2.4) неустойчивы при b=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIWaGaaGOlaaaa@3B27@

В случае b>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@3A70@  имеем на центральном инвариантном многообразии следующие асимптотики для x,y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiY cacaWG5baaaa@3AB8@  при t+: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkabgUcaRiabg6HiLkaaiQdaaaa@3E04@  

x(t)= b f 2 t 1 +o( t 1 ), y(t)=c f ˙ (t) b f 2 t 2 +o( t 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiabaa aabaGaamiEaiaaiIcacaWG0bGaaGykaiaai2dadaqadaqaaiaadkga cqGHPms4caWGMbWaaWbaaSqabeaacaaIYaaaaOGaeyOkJeVaamiDaa GaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUca Riaad+gacaaIOaGaamiDamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aaiMcacaaISaaabaaabaaabaaabaGaamyEaiaaiIcacaWG0bGaaGyk aiaai2dacqGHsislcaWGJbGabmOzayaacaGaaGikaiaadshacaaIPa WaaeWaaeaacaWGIbGaeyykJeUaamOzamaaCaaaleqabaGaaGOmaaaa kiabgQYiXlaadshaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaikdaaaGccqGHRaWkcaWGVbGaaGikaiaadshadaahaaWcbeqaaiab gkHiTiaaikdaaaGccaaIPaGaaGilaaqaaaqaaaqaaaaaaaa@686F@

где

f 2 = 1 T 0 T f (t) 2 dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam OzamaaCaaaleqabaGaaGOmaaaakiabgQYiXlaai2dadaWcaaqaaiaa igdaaeaacaWGubaaamaapedabeWcbaGaaGimaaqaaiaadsfaa0Gaey 4kIipakiaadAgacaaIOaGaamiDaiaaiMcadaahaaWcbeqaaiaaikda aaGccaWGKbGaamiDaiaai6caaaa@4A70@

Возвращаясь к переменным v,u, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiY cacaWG1bGaaGilaaaa@3B68@  можно сделать следующий вывод без строгих математических доказательств.

Существует ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@3B30@  такое, что для начального условия v(0)> ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaaIWaGaaGykaiaai6dacqaH1oqzdaahaaWcbeqaaiabgkHiTiaa igdaaaaaaa@3F65@  и b>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@3A70@  имеют место следующие асимптотики фазовых переменных системы (2.1) при t+: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkabgUcaRiabg6HiLkaaiQdaaaa@3E04@  

v(t)=b f 2 t+o(t), u(t)=c f ˙ (t)(b f 2 t ) 1 +o( t 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiabaa aabaGaamODaiaaiIcacaWG0bGaaGykaiaai2dacaWGIbGaeyykJeUa amOzamaaCaaaleqabaGaaGOmaaaakiabgQYiXlaadshacqGHRaWkca WGVbGaaGikaiaadshacaaIPaGaaGilaaqaaaqaaaqaaaqaaiaadwha caaIOaGaamiDaiaaiMcacaaI9aGaeyOeI0Iaam4yaiqadAgagaGaai aaiIcacaWG0bGaaGykaiaaiIcacaWGIbGaeyykJeUaamOzamaaCaaa leqabaGaaGOmaaaakiabgQYiXlaadshacaaIPaWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaey4kaSIaam4BaiaaiIcacaWG0bWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaaGykaiaai6caaeaaaeaaaeaaaaaaaa@62FE@

Перейдем к исходным переменным ω 1 , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeM8a3naaBaaaleaacaaIYaaa beaaaaa@3E30@  и сформулируем следующее утверждение.

Предложение 2.1. Существует ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@3B30@  такое, что для начального значения ω 1 (0), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaIPaGaaGilaaaa@3D9A@  удовлетворяющего условию I 23 I 22 1 ω 1 (0)> ε 1 >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam ysamaaBaaaleaacaaIYaGaaG4maaqabaGccaWGjbWaa0baaSqaaiaa ikdacaaIYaaabaGaeyOeI0IaaGymaaaakiabeM8a3naaBaaaleaaca aIXaaabeaakiaaiIcacaaIWaGaaGykaiaai6dacqaH1oqzdaahaaWc beqaaiabgkHiTiaaigdaaaGccaaI+aGaaGimaiaaiYcaaaa@4AF9@  и для параметров системы (1.5), удовлетворяющих условию

I 11 I 22 I 11 I ˜ 33 I 23 2 I 11 I 22 >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada qadaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Ia amysamaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawIcacaGLPaaada qadaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Ia bmysayaaiaWaaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayjkaiaawM caaiabgkHiTiaadMeadaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaa aaGcbaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGjbWaaS baaSqaaiaaikdacaaIYaaabeaaaaGccaaI+aGaaGimaiaaiYcaaaa@5255@

имеют место следующие асимптотики фазовых переменных системы (1.5) при t+: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaayg W7cqGHsgIRcaaMb8Uaey4kaSIaeyOhIuQaaGzaVlaaiQdaaaa@42A2@  

ω 1 (t)= I 11 I 22 I 11 I ˜ 33 I 23 2 I 11 I 23 f 2 t+o(t), ω 2 (t) I 11 I ˜ 33 I 23 f(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiabgkHi TmaalaaabaWaaeWaaeaacaWGjbWaaSbaaSqaaiaaigdacaaIXaaabe aakiabgkHiTiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGL OaGaayzkaaWaaeWaaeaacaWGjbWaaSbaaSqaaiaaigdacaaIXaaabe aakiabgkHiTiqadMeagaacamaaBaaaleaacaaIZaGaaG4maaqabaaa kiaawIcacaGLPaaacqGHsislcaWGjbWaa0baaSqaaiaaikdacaaIZa aabaGaaGOmaaaaaOqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqa aOGaamysamaaBaaaleaacaaIYaGaaG4maaqabaaaaOGaeyykJeUaam OzamaaCaaaleqabaGaaGOmaaaakiabgQYiXlaadshacqGHRaWkcaWG VbGaaGikaiaadshacaaIPaGaaGilaiaaywW7cqaHjpWDdaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiDaiaaiMcarqqr1ngBPrgifHhDYfga iuaacqWF8iIodaWcaaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyOeI0IabmysayaaiaWaaSbaaSqaaiaaiodacaaIZaaabeaa aOqaaiaadMeadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaakiaadAgaca aIOaGaamiDaiaaiMcacaaISaaaaa@7B16@

причем

  • если I 23 >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccaaI+aGaaGimaiaaiYcaaaa@3CBC@  то ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaeyOKH4QaeyOeI0IaeyOhIukaaa@3F10@  при t+; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkabgUcaRiabg6HiLkaaiUdaaaa@3E05@
  • если I 23 <0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccaaI8aGaaGimaiaaiYcaaaa@3CBA@  то ω 1 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaeyOKH4Qaey4kaSIaeyOhIukaaa@3F05@  при t+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkabgUcaRiabg6HiLkaai6caaaa@3DF8@  

3. Численные эксперименты

Проиллюстрируем аналитические результаты для случая

f(t)=sint, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai2daciGGZbGaaiyAaiaac6gacaWG0bGaaGil aaaa@409E@

используя методы численного интегрирования.

На рис. 3 изображены отображения за период (сечение Пуанкаре) для системы (1.5) с заданным тензором инерции

J= 1.5 0 0 0 1.3 I 23 0 I 23 1.8 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai2 dadaqadaqaauaabeqadmaaaeaacaaIXaGaaGOlaiaaiwdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGaaGOlaiaaiodaaeaaca WGjbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaicdaaeaacaWG jbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaigdacaaIUaGaaG ioaaaaaiaawIcacaGLPaaacaaIUaaaaa@4A6E@  (3.1)

 

Рис. 3. Отображения за период системы (1.5) с тензором инерции (3.1)

 

Эти отображения соответствуют случаю b<0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacaaIWaGaaGOlaaaa@3B26@

На рис. 4 изображены отображения за период (сечение Пуанкаре) для системы (1.5) с заданным тензором инерции

J= 1.3 0 0 0 1.5 I 23 0 I 23 1.8 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai2 dadaqadaqaauaabeqadmaaaeaacaaIXaGaaGOlaiaaiodaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGaaGOlaiaaiwdaaeaaca WGjbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaicdaaeaacaWG jbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaigdacaaIUaGaaG ioaaaaaiaawIcacaGLPaaacaaIUaaaaa@4A6E@  (3.2)

 

Рис. 4. Отображения за период системы (1.5) с тензором инерции (3.2)

 

Рис. 4 (a) и (b) соответствуют случаю b>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaGaaGOlaaaa@3B28@  Области начальных условий системы (1.5) разделяются на две подобласти (рис. 5). Если начальные условия относятся к внешней подобласти, фазовая кривая не ограничена и убегает в «бесконечность». Если начальные условия относятся к внутренней подобласти, фазовая кривая ограничена.

 

Рис. 5. Разделение области начальных условий

 

Рис. 4 (c) соответствует случаю b<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacaaIWaaaaa@3A6E@  и содержит странный аттрактор с показателями Ляпунова

λ 1 0.073, λ 2 =0, λ 3 0.106. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyisISRaaGimaiaai6cacaaIWaGaaG4n aiaaiodacaaISaGaaGjcVlabeU7aSnaaBaaaleaacaaIYaaabeaaki aai2dacaaIWaGaaGilaiaayIW7cqaH7oaBdaWgaaWcbaGaaG4maaqa baGccqGHijYUcqGHsislcaaIWaGaaGOlaiaaigdacaaIWaGaaGOnai aai6caaaa@5260@

Старший показатель Ляпунова положителен, а сумма показателей Ляпунова отрицательна. Это подтверждает, что на рис. 4 (c) изображен странный аттрактор.

На рис. 6 представлена карта динамических режимов на плоскости параметров ( I 23 , I ˜ 33 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaaGilaiaaygW7ceWGjbGb aGaadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaGykaiaaiYcaaaa@416C@  где параметры лежат в интервалах I 23 [0.7,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIYaGaaG4maaqabaGccqGHiiIZcaaIBbGaaGimaiaai6ca caaI3aGaaGilaiaaigdacaaIDbaaaa@4178@  и I ˜ 33 [1.6,1.9]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaia WaaSbaaSqaaiaaiodacaaIZaaabeaakiabgIGiolaaiUfacaaIXaGa aGOlaiaaiAdacaaISaGaaGymaiaai6cacaaI5aGaaGyxaiaai6caaa a@43BB@  Области черного цвета с цветными включениями соответствуют параметрам системы со странным аттрактором. Подтверждается сценарий Фейгенбаума о появлении странного аттрактора в результате каскада бифуркаций удвоения периода.

 

Рис. 6. Карта динамических режимов на плоскости  ( I 23 , I ˜ 33 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM eadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaaGilaiqadMeagaacamaa BaaaleaacaaIZaGaaG4maaqabaGccaaIPaaaaa@3F2C@  

 

4. Заключение

Результаты, полученные в данном исследовании аналитически, согласуются с результатами, полученными эмпирически в [7]. Найдены механические параметры твердого тела, для которых модуль угловой скорости тела (а следовательно, и модули угловых скоростей омниколес) будет неограниченно возрастать. Показано, что управляющие крутящие моменты на омниколесах могут быть заданы не единственным образом. Следовательно, задавая управляющие крутящие моменты на омниколесах другим образом, может быть получена система с абсолютно другой динамикой.

×

About the authors

Evgeniya А. Mikishanina

Steklov Mathematical Institute of Russian Academy of Sciences; Chuvash State University

Author for correspondence.
Email: evaeva_84@mail.ru
ORCID iD: 0000-0003-4408-1888

Candidate of Physics and Mathematics, Researcher of the Mechanics Department, Associate Professor of the Actuarial and Financial Mathematics Department

Russian Federation, 8 Gubkina St., Moscow 119991; 15 Moskovskii Av., Chebokasry 428015

References

  1. Г. К. Суслов, Теоретическая механика, Гостехиздат, Москва-Ленинград, 1946. [G. K. Suslov, Theoretical mechanics, Gostekhizdat, Moscow-Leningrad, 1946 (In Russian)].
  2. В. Вагнер, “Геометрическая интерпритация движения неголономных динамических систем”, Труды семинара по векторному и тензорному анализу, 1941, № 5, 301–327. [V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems”, Proceedings of the Seminar on Vector and Tensor Analysis, 1941, № 5, 301–327 (In Russian)].
  3. L. C. Garcia–Naranjo, A. J. Maciejewsk, J. C. Marrero, M. Przybylska, “The inhomogeneous Suslov problem”, Physics Letters A, 378:32–33 (2013), 2389–2394.
  4. A. V. Borisov, E. A. Mikishanina, “Two nonholonomic chaotic systems. Part I. On the Suslov problem”, Regular and Chaotic Dynamics, 25:3 (2020), 313–322.
  5. A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Hamiltonicity and integrability of the Suslov problem”, Regular and Chaotic Dynamics, 16:1–2 (2011), 104–116.
  6. A. D. Bilimovitch, “Sur les systemes conservatifs, non holonomes avec des liaisons dependantes du temps”, Comptes rendus de l’Acad´emie des Sciences, 156 (1913), 12–18.
  7. A. V. Borisov, A. V. Tsiganov, E. A. Mikishanina, “On inhomogeneous nonholonomic Bilimovich system”, Communications in Nonlinear Science and Numerical Simulation, 94 (2021), 105573.
  8. В. И. Киргетов, “О движении управляемых механических систем с условными связя ми (сервосвязями)”, Прикладная математика и механика, 31:3 (1967), 433–446; англ. пер.:V. I. Kirgetov, “The motion of controlled mechanical systems with prescribed constraints (servoconstraints)”, Journal of Applied Mathematics and Mechanics, 31:3 (1967), 465–477.
  9. Е. А. Микишанина, “Динамика качения сферического робота с маятниковым приводом, управляемого сервосвязью Билимовича”, Теоретическая и математическая физика, 211:2 (2022), 281–294; англ. пер.:E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoretical and Mathematical Physics, 211:2 (2022), 679–691
  10. V. V. Kozlov, “The dynamics of systems with servoconstraints. I”, Regular and Chaotic Dynamics, 20:3 (2015), 205–224.
  11. Н. Н. Баутин, Е. А. Леонтович, Методы и приемы качественного исследования динамических систем на плоскости, Наука, М., 1990. [N. N. Bautin, E. A. Leontovich, Methods and Techniques of Qualitative Research of Dynamical Systems on a Plane, Nauka Publ., Moscow, 1990 (In Russian)].
  12. I. Bizyaev, S. Bolotin, I. Mamaev, “Normal forms and averaging in an acceleration problem in nonholonomic mechanics”, Chaos, 31:1 (2021), 013132.
  13. E. A. Mikishanina, “The problem of acceleration in the dynamics of a double-link wheeled vehicle with arbitrarily directed periodic exitation”, Theoretical and Applied Mechanics, 50:2 (2023), 205–221.
  14. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific, Singapore, New Jersey, London, Hong Kong, 2001.
  15. В. Р. Барсегян, Т. А. Симонян, А. Г. Матевосян, “Об одной задаче управления квадрокоптером с заданными промежуточными значениями разных частей координат”, Вестник российских университетов. Математика, 29:145 (2024), 29–42. [V. R. Barseghyan, T. A. Simonyan, A. G. Matevosyan, “On one problem of quadcopter control with given intermediate values of different parts of coordinates”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:145 (2024), 29–42 (In Russian)].
  16. А. А. Килин, Ю. Л. Караваев, “Кинематическая модель управления сферороботом с неуравновешенной омниколесной платформой”, Нелинейная динамика, 10:4 (2014), 497–511. [A. A. Kilin, Yu. L. Karavaev, “The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform”, Russian Journal of Nonlinear Dynamics, 10:4 (2014), 497–511 (In Russian)].
  17. А. А Килин, Ю. Л. Караваев, “Динамика сфероробота с внутренней омниколесной платфорой”, Нелинейная динамика, 11:1 (2015), 187–204. [A. A. Kilin, Yu. L. Karavaev, “The dynamic of a spherical robot with an internal omniwheel platform”, Russian Journal of Nonlinear Dynamics, 11:1 (2015), 187–204 (In Russian)].
  18. J. Carr, Applications of Centre Manifold Theory, Springer–Verlag, New York, 1981.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Wagner's physical implementation of Suslov's problem

Download (44KB)
3. Fig. 2. Omniwheel design

Download (115KB)
4. Fig. 3. Mappings for the period of the system (1.5) with the inertia tensor (3.1)

Download (385KB)
5. Fig. 4. Mappings for the period of the system (1.5) with the inertia tensor (3.2)

Download (354KB)
6. Fig. 5. Division of the initial conditions region

Download (157KB)
7. Fig. 6. Map of dynamic modes on the plane

Download (128KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».