О существовании решения периодической краевой задачи для полулинейных дифференциальных включений дробного порядка в банаховых пространствах
- Авторы: Каменский М.И.1, Обуховский В.В.2, Петросян Г.Г.2
-
Учреждения:
- ФГБОУ ВО «Воронежский государственный университет»
- ФГБОУ ВО «Воронежский государственный педагогический университет»
- Выпуск: Том 26, № 135 (2021)
- Страницы: 250-270
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2686-9667/article/view/294994
- DOI: https://doi.org/10.20310/2686-9667-2021-26-135-250-270
- ID: 294994
Цитировать
Полный текст
Аннотация
Об авторах
Михаил Игоревич Каменский
ФГБОУ ВО «Воронежский государственный университет»
Email: mikhailkamenski@mail.ru
доктор физико-математических наук, заведующий кафедрой функционального анализа и операторных уравнений 394018, Российская Федерация, г. Воронеж, Университетская пл., 1
Валерий Владимирович Обуховский
ФГБОУ ВО «Воронежский государственный педагогический университет»
Email: valerio-ob2000@mail.ru
доктор физико-математических наук, заведующий кафедрой высшей математики 394043, Российская Федерация, г. Воронеж, ул. Ленина, 86
Гарик Гагикович Петросян
ФГБОУ ВО «Воронежский государственный педагогический университет»
Email: garikpetrosyan@yandex.ru
кандидат физико-математических наук, доцент кафедры высшей математики 394043, Российская Федерация, г. Воронеж, ул. Ленина, 86
Список литературы
- S.G. Samco, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publ., Amsterdam, 1993.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., North-Holland Mathematics Studies, Amsterdam, 2006.
- F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusionwave equation”, Waves and Stability in Continuous Media, 1994, 246-251.
- M. Afanasova, Y. Ch. Liou, V. Obukhoskii, G. Petrosyan, “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919-1935.
- J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlinear Var. Anal., 2018, №2, 25-33.
- T.D. Ke, N.V. Loi, V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 2015, №18, 531-553.
- М.С. Афанасова, Г.Г. Петросян, “О краевой задаче для функционально-дифференциального включения дробного порядка с обобщенным начальным условием в банаховом пространстве”, Известия вузов. Математика, 2019, №9, 3-15.
- I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 2017, №20, 1424-1446.
- M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571-591.
- M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On a Periodic Boundary Value Problem for a Fractional-Order Semilinear Functional Differential Inclusions in a Banach Space”, Mathematics, 7:12, Special Issue “Fixed Point, Optimization, and Applications” (2019), 5-19.
- Г.Г. Петросян, “Об антипериодической краевой задаче для полулинейного дифференциального включения дробного порядка с отклоняющимся аргументом в банаховом пространстве”, Уфимский математический журнал, 12:3 (2020), 71-82.
- R. Agarwal, B. Ahmad, “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Comput. Math. Appl., 2011, №62, 1200-1214.
- M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Existence and Approximation of Solutions to Nonlocal Boundary Value Problems for Fractional Differential Inclusions”, Fixed Point Theory and Applications, 2019, №2, 1-21.
- M. Kamenskii, V. Obukhovskii, G. Petrosyan, J.C. Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 28:4 (2017), 1-28.
- M. Belmekki, J.J. Nieto, R. Rodriguez-Lopez, “Existence of periodic solution for a nonlinear fractional differential equation”, Boundary Value Problems, 2009 (2009), 1-18, Article ID 324561.
- M. Belmekki, J.J. Nieto, R. Rodriguez-Lopez, “Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2014), 1-27.
- R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin; Heidelberg, 2014.
- V.M. Bogdan, Generalized Vectorial Lebesgue and Bochner Integration Theory, 2010, arXiv:1006.3881v1.
- Г.М. Фихтенгольц, Курс дифференциального и интегрального исчисления. Т. 1, Физматлит, М., 2006.
- M.I. Kamenskii, V.V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin; New-York, 2001.
- V.V. Obukhovskii, B. Gelman, Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020.
- J. Diestel, W. M. Ruess, W. Schachermayer, “On weak compactness in ”, Proc. Amer. Math. Soc., 1993, №118, 447-453.
Дополнительные файлы
