Solution of a second-order algebro-differential equation in a Banach space
- Authors: Uskov V.I.1
-
Affiliations:
- Voronezh State University of Forestry and Technologies after named G. F. Morozov
- Issue: Vol 27, No 140 (2022)
- Pages: 375-385
- Section: Original articles
- URL: https://journal-vniispk.ru/2686-9667/article/view/296495
- ID: 296495
Cite item
Full Text
Abstract
This article is devoted to the study of the algebro-differential equation
\begin{equation*}
A\frac{d^2u}{dt^2}=B\frac{du}{dt}+Cu(t)+f(t),
\end{equation*}
where $A,$ $B,$ $C$ are closed linear operators acting from a Banach space $E_1$ into a Banach space $E_2$ whose domains are everywhere dense in $E_1$. $A$ is a Fredholm operator with zero index (hereinafter, Fredholm), the function $f(t)$ takes values in $E_2$; $t\in[0;T]$. The kernel of the operator $A$ is assumed to be one-dimensional. For solvability of the equation with respect to the derivative, the method of cascade splitting is applied, consisting in the stepwise splitting of the equation and conditions to the corresponding equations and conditions in subspaces of lower dimensions. One-step and two-step splitting are considered, theorems on the solvability of the equation are obtained. The theorems are used to obtain the existence conditions for a solution to the Cauchy problem. In order to illustrate the results obtained, a homogeneous Cauchy problem with given operator coefficients in the space $\mathbb{R}^2$ is solved. For this, it is considered the
second-order differential equation in the finite-dimensional space $\mathbb{C}^m$
\begin{equation*}
\frac{d^2u}{dt^2}=H\frac{du}{dt}+Ku(t).
\end{equation*}
The characteristic equation $M(\lambda):=\det(\lambda^2 I-\lambda H-K)=0$ is studied. For the polynomial $M(\lambda),$ in the cases $m=2,$ $m=3,$ the Maclaurin formulas are obtained. General
solution of the equation is defined in the case of the unit algebraic multiplicity of the characteristic equation.
About the authors
Vladimir I. Uskov
Voronezh State University of Forestry and Technologies after named G. F. Morozov
Author for correspondence.
Email: vum1@yandex.ru
ORCID iD: 0000-0002-3542-9662
Candidate of Physics and Mathematics, Senior Lecturer of the Mathematics Department
Russian Federation, 8 Timiryazeva St., Voronezh 394613, Russian FederationReferences
- Н.Д. Копачевский, С.Г. Крейн, Нго Зуй Кан, Операторные методы в линейной гидродинамике, Наука, М., 1989. [N.D. Kopachevsky, S.G. Krein, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics, Nauka Publ., Moscow, 1989 (In Russian)].
- R.C. Dorf, R.H. Bishop, Modern Control Systems, Pearson Education International, England, 2008.
- M.M. Cavalcanti, V.N. Domingos Cavalcanti, J. Ferreira, “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24 (2001), 1043–1053.
- М.Н. Ботороева, О.C. Будникова, Л.C. Соловарова, “О выборе краевых условий для дифференциально-алгебраических уравнений второго порядка”, Вестник Бурятского государственного университета. Математика, информатика, 2019, №3, 32–41. [M.N. Botoroeva, O.S. Budnikova, L.S. Solovarova, “On the choice of boundary conditions for second-order differential-algebraic equations”, BSU Bulletin. Mathematics, Informatics, 2019, №3, 32–41].
- С.С. Орлов, “Непрерывные решения вырожденного интегро-дифференциального уравнения второго порядка в банаховых пространствах”, Известия Иркутского государственного университета. Серия «Математика», 2:1 (2009), 328–332. [S.S. Orlov, “Continuous solutions of a second-order degenerate integro-differential equation in Banach spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 2:1 (2009), 328–332].
- В.И. Усков, “Разрешение алгебро-дифференциального уравнения второго порядка относительно производной”, Вестник российских университетов. Математика, 26:136 (2021), 414–420. [V.I. Uskov, “Solving a second-order algebro-differential equation with respect to the derivative”, Russian Universities Reports. Mathematics, 26:136 (2021), 414–420].
- С.М. Никольский, “Линейные уравнения в линейных нормированных пространствах”, Известия Академии Наук СССР. Серия математическая, 7:3 (1943), 147–166. [S. Nikolsky, “Linear equations in normed linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 7:3 (1943), 147–166].
- С.П. Зубова, В.И. Усков, “Асимптотическое решение задачи Коши для уравнения первого порядка с малым параметром в банаховом пространстве. Регулярный случай”, Математические заметки, 103:3 (2018), 393–404; англ. пер.: S.P. Zubova, V.I. Uskov, “Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case”, Mathematical Notes, 103:3 (2018), 395–404.
Supplementary files
