NEW SUFFICIENT CONDITIONS IN THE GENERALIZED SPECTRUM APPROACH TO DEAL WITH SPECTRAL POLLUTION

Cover Page

Cite item

Full Text

Abstract

In this work, we propose new sufficient conditions to solve the spectralpollution problem by using the generalized spectrum method. We give the theoretical foundation of the generalized spectral approach, as well as illustrate its effectivenessby numerical results.

Full Text

Spectral approximation for differential operators takes place in different applications in conjunction with the study of the mathematical modeling, as the case of Schr¨odinger operator in the quantum physics.
×

About the authors

Ammar Khellaf

Universit.e 8 Mai 1945, Guelma

Email: amarlasix@gmail.com; khellaf.ammar@univ-guelma.dz
Post-Graduate Student B.P. 401 Guelma Alg.erie

References

  1. Aslanyan A., Davies E.B. Spectral instability for some Schrodinger operators. arXiv:math/9810063v1 [math.SP].
  2. Rappaz J., Sanchez Hubert J., Sanchez Palencia E., Vassiliev D. On spectral pollution in the finite element approximation of thin elastic ’membrane’ shells // Numer. Math. 1997. vol. 75. P. 473-500.
  3. Davies E.B. Spectral enclosures and complex resonances for general selfadjoint operators // LMS J. Comput. Math. 1998. Vol. 1. P. 42-74.
  4. Davies E.B., Plum M. Spectral pollution. arXiv:math/0302145v1. 2002.
  5. Boffi D. et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form // Math. of Comp. 1999. Vol. 69. P. 121-140.
  6. Guebbai H. Generalized spectrum approximation and numerical computation of eigenvalues for schr.odinger’s operators // Lobachevskii Journal of Mathematics. 2013. Vol. 34. P. 45-60.
  7. Ahues M., Largillier A., Limaye B.V. Spectral Computations for Bounded Operators. N. Y.: Chapman and Hall/CRC, 2001.
  8. Marletta M., Scheichl R. Eigenvalues in Spectral Gaps of Differential Operators // J. Spectr. Theory. 2012. Vol. 2 (3). P. 293-320.
  9. Guebbai H., Largillier A. Spectra and Pseudospectra of Convection-Diffusion Operator// Integral Methods in Science and Engineering. Boston, 2011.
  10. Roach G.F. Green’s Functions. N. Y.: Cambridge University Press, 1982.
  11. Atkinson K.E. The Numerical Solution of Integral Equations of the Second Kind. Cambridge, Cambridge University Press, 1997.
  12. Trefethen L.N. Pseudospectra of Linear Operators // SIAM Review. 1997. Vol. 39. P. 383.
  13. Laub A.J. Matrix Analysis for Scientists and Engineers. California: SIAM, 2005. 172 p.
  14. Gohberg I., Goldberg S., Kaashoek M.A. Classes of Linear Operators. Vol. I. Basel: Springer, 1990.
  15. Kato T. Perturbation Theory of Linear Operators. Second edition. Berlin; Heidelberg; New York: Springer-Verlag, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).