THE MATHEMATICAL MODELING OF SOME ASPECTS OF COGNITIVE RECOGNITION OF COMPLEX OBJECTS WITH THE SPATIAL PERSPECTIVE

Cover Page

Cite item

Full Text

Abstract

The approach and design of experimental studies on the visual perception of the spatially ambiguous objects is presented. A mathematical model of the cognitive recognition of ambiguous object (Necker cube) is developed on the basis of a combination of approaches of nonlinear dynamics and statistical evaluations. The theoretical model shows good agreement with experimental data.

About the authors

Anastasiya Evgenevna Runnova

Yuri Gagarin State Technical University of Saratov

Email: anefila@gmail.com
Candidate of Physics and Mathematics, Associate Professor of Automation, Control and Mechatronics Department Saratov, Russian Federation

Maksim Olegovich Zhuravlev

Yuri Gagarin State Technical University of Saratov

Email: zhuravlevmo@gmail.com
Candidate of Physics and Mathematics, Associate Professor of Electronics, Vibrations and Waves Department Saratov, Russian Federation

Dmitriy Valerevich Lopatin

Tambov State University named after G.R. Derzhavin

Email: +79107540080@ya.ru
Candidate of Physics and Mathematics, Associate Professor, Associate Professor of Mathematical Modeling and Information Technology Department Tambov, Russian Federation

References

  1. van Luijtelaar G., Lüttjohann A., Makarov V.V., Maksimenko V.A., Koronovskii A.A., Hramov A.E. Methods of automated absence seizure detection, interference bystimulation, and possibilities for prediction in genetic absence models // Journal of Neuroscience Methods. 2016. V. 260. P. 144-158.
  2. Koronovskii A.A., Hramov A.E., Grubov V.V., Moskalenko O.I., Sitnikova E.Yu., Pavlov A.N. Coexistence of intermittencies in the neuronal network of the epileptic brain // Phys. Rev. E. 2016. V. 93. P. 032220.
  3. Москаленко О.И., Короновский А.А., Храмов А.Е., Журавлев М.О. Оценка степени синхронности режима перемежающейся фазовой синхронизации по временному ряду (модельные системы и нейрофизиологические данные) // Письма в ЖЭТФ. 2016. Т. 103. № 8. C. 606-610.
  4. Павлов А.Н., Храмов А.Е., Короновский А.А., Ситникова Е.Ю., Макаров В.А., Овчинников А.А. Вейвлет-анализ в нейродинамике // УФН. 2012. Т. 182. № 9. С. 905-939.
  5. Williams J.M.G., Watts F.N., MacLeod C.M., Mathews A. Cognitive psychology and emotional disorders. Chichester: Wiley, 1997. 404 p.
  6. Clark D.A., Beck A.T. Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings // Trends in Cognitive Science. 2010. V. 14. P. 418-424.
  7. Robinson T.E., Berridge К.C. Addiction // Annu. Rev. Psychol. 2003. V. 54. P. 25-53.
  8. McManus F., Glenn D.P., Chadwick P. Biases in the processing of different forms of threat in bulimic and comparison women // Journal of Nervous and Mental Disease. 1986. V. 184. P. 547-554.
  9. Necker L.A. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid // London and Edinburgh Philosophical Magazine and Journal of Science. 1832. V. 1. № 5. P. 229-338.
  10. Leopold D.A., Logothetis N.K. Multistage phenomena: changing views in perception // Trends in Cognitive Sciences. 1999. V. 3. P. 254-264.
  11. Sterzer P., Kleinschmidt A., Rees G. The neural bases of multistable perception // Trends Cogn. Sci. 2009. V. 13. № 7. P. 310-318.
  12. Long G.M., Toppino T.C. Enduring interest in perceptual ambiguity: Alternating views of reversible figures // Psychological Bulletin. 2004. V. 130. № 5. P. 748-768.
  13. Pisarchik A.N., Jaimes-Reategui R., Magallon-Garcia C.D.A., Castillo-Morales C.O. Critical slowing down and noise-induced intermittency in bistable perception: bifurcation analysis // Biological Cybernetics. 2014. V. 108. P. 397.
  14. Kornmeier J., Hein C.M., Bach M. Multistable perception: When bottom-up and top-down coincide // Brain and Cognition. 2009. V. 69. № 1. P. 138-147.
  15. Hramov A.E., Koronovskii A.A., Kurovskaуa M.K. Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise // Phys. Rev. E. 2008. V. 78. P. 036212.
  16. Hramov A.E., Koronovskii A.A., Kurovskaуa M.K., Ovchinnikov A.A., Boccaletti S. Length distribution of laminar phases for type-I intermittency in the presence of noise // Phys. Rev. E. 2007. V. 76. № 2. P. 026206.
  17. Короновский А.А., Куровская М.К., Храмов А.Е., Шурыгина С.А. Влияние шума на поведение осцилляторов вблизи границы синхронизации // ЖТФ. 2009. Т. 79. № 10. С. 1-9.
  18. Wilson H.R. Computational evidence for a rivalry hierarchy in vision // Proceedings of the National Academy of Sciences. 2003. V. 100. P. 14499.
  19. Wolberg J. Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments. Berlin: Springer-Verlag, 2006. 250 p.
  20. Grubov V.V., Runnova A.E., Kurovskaуa M.K., Pavlov A.N., Koronovskii A.A., Hramov A.E. Demonstration of brain noise on human EEG signals in perception of bistable images // Proc. SPIE. 2016. V. 9707. P. 970702.
  21. Hramov A.E., Koronovskii A.A., Makarov V.A., Pavlov A.N., Sitnikova E.Yu. Wavelets in Neuroscience. Heidelberg: Springer-Verlag, 2015. 318 p.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).